AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS
Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exagg...
Gespeichert in:
Veröffentlicht in: | Applied artificial intelligence 2012-09, Vol.26 (8), p.733-742 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 8 |
container_start_page | 733 |
container_title | Applied artificial intelligence |
container_volume | 26 |
creator | Motlagh, O. Tang, S. H. Khaksar, W. Ismail, N. |
description | Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function. |
doi_str_mv | 10.1080/08839514.2012.713307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1041026051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671467999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKffwEPAi5fOvDZtmpOE2m6FtR1bFXYKWdvARrfOZEP27e2YXjx4evDe7__n8UPoEcgISEheSBh63Ac6cgm4IwaeR9gVGvQ35gQ-9a_R4Iw4Z-YW3Vm7IYQAYzBAicixmJbxPBdl-hFjMZvNCxFNcFngJMqwiPp1fypynBRznBVv8TTNx_htmYssjfBiuSjjbHGPbrRqbfPwM4foPYnLaOJMi3EaialTUaAHh1arJqRUq8qlFQ85aBoS7XtcuwEw5RIe-kFdM1hRv9F8pRXRGmpFfXCrwGu8IXq-9O5N93ls7EFu17Zq2lbtmu5oJQQMaMA45z369AfddEez67-TQCgQNyA-9BS9UJXprDWNlnuz3ipz6iF5lit_5cqzXHmR28deL7H1Tndmq74609byoE5tZ7RRu2ptpfdvwzfKUXgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041026051</pqid></control><display><type>article</type><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><source>EBSCOhost Business Source Complete</source><creator>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</creator><creatorcontrib>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</creatorcontrib><description>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2012.713307</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Activation ; Cognitive models ; Convergence ; Decision making models ; Dynamical systems ; Dynamics ; Fuzzy ; Fuzzy logic ; Gray scale ; Mathematical models ; Neural networks ; Stimuli ; Training</subject><ispartof>Applied artificial intelligence, 2012-09, Vol.26 (8), p.733-742</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor & Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</citedby><cites>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Motlagh, O.</creatorcontrib><creatorcontrib>Tang, S. H.</creatorcontrib><creatorcontrib>Khaksar, W.</creatorcontrib><creatorcontrib>Ismail, N.</creatorcontrib><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><title>Applied artificial intelligence</title><description>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</description><subject>Activation</subject><subject>Cognitive models</subject><subject>Convergence</subject><subject>Decision making models</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Gray scale</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Stimuli</subject><subject>Training</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKffwEPAi5fOvDZtmpOE2m6FtR1bFXYKWdvARrfOZEP27e2YXjx4evDe7__n8UPoEcgISEheSBh63Ac6cgm4IwaeR9gVGvQ35gQ-9a_R4Iw4Z-YW3Vm7IYQAYzBAicixmJbxPBdl-hFjMZvNCxFNcFngJMqwiPp1fypynBRznBVv8TTNx_htmYssjfBiuSjjbHGPbrRqbfPwM4foPYnLaOJMi3EaialTUaAHh1arJqRUq8qlFQ85aBoS7XtcuwEw5RIe-kFdM1hRv9F8pRXRGmpFfXCrwGu8IXq-9O5N93ls7EFu17Zq2lbtmu5oJQQMaMA45z369AfddEez67-TQCgQNyA-9BS9UJXprDWNlnuz3ipz6iF5lit_5cqzXHmR28deL7H1Tndmq74609byoE5tZ7RRu2ptpfdvwzfKUXgw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Motlagh, O.</creator><creator>Tang, S. H.</creator><creator>Khaksar, W.</creator><creator>Ismail, N.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><author>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Cognitive models</topic><topic>Convergence</topic><topic>Decision making models</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Gray scale</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Stimuli</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motlagh, O.</creatorcontrib><creatorcontrib>Tang, S. H.</creatorcontrib><creatorcontrib>Khaksar, W.</creatorcontrib><creatorcontrib>Ismail, N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motlagh, O.</au><au>Tang, S. H.</au><au>Khaksar, W.</au><au>Ismail, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</atitle><jtitle>Applied artificial intelligence</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>26</volume><issue>8</issue><spage>733</spage><epage>742</epage><pages>733-742</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/08839514.2012.713307</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9514 |
ispartof | Applied artificial intelligence, 2012-09, Vol.26 (8), p.733-742 |
issn | 0883-9514 1087-6545 |
language | eng |
recordid | cdi_proquest_journals_1041026051 |
source | EBSCOhost Business Source Complete |
subjects | Activation Cognitive models Convergence Decision making models Dynamical systems Dynamics Fuzzy Fuzzy logic Gray scale Mathematical models Neural networks Stimuli Training |
title | AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ALTERNATIVE%20APPROACH%20TO%20FCM%20ACTIVATION%20FOR%20MODELING%20DYNAMIC%20SYSTEMS&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Motlagh,%20O.&rft.date=2012-09-01&rft.volume=26&rft.issue=8&rft.spage=733&rft.epage=742&rft.pages=733-742&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2012.713307&rft_dat=%3Cproquest_cross%3E1671467999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041026051&rft_id=info:pmid/&rfr_iscdi=true |