AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS

Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exagg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2012-09, Vol.26 (8), p.733-742
Hauptverfasser: Motlagh, O., Tang, S. H., Khaksar, W., Ismail, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 8
container_start_page 733
container_title Applied artificial intelligence
container_volume 26
creator Motlagh, O.
Tang, S. H.
Khaksar, W.
Ismail, N.
description Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.
doi_str_mv 10.1080/08839514.2012.713307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1041026051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671467999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKffwEPAi5fOvDZtmpOE2m6FtR1bFXYKWdvARrfOZEP27e2YXjx4evDe7__n8UPoEcgISEheSBh63Ac6cgm4IwaeR9gVGvQ35gQ-9a_R4Iw4Z-YW3Vm7IYQAYzBAicixmJbxPBdl-hFjMZvNCxFNcFngJMqwiPp1fypynBRznBVv8TTNx_htmYssjfBiuSjjbHGPbrRqbfPwM4foPYnLaOJMi3EaialTUaAHh1arJqRUq8qlFQ85aBoS7XtcuwEw5RIe-kFdM1hRv9F8pRXRGmpFfXCrwGu8IXq-9O5N93ls7EFu17Zq2lbtmu5oJQQMaMA45z369AfddEez67-TQCgQNyA-9BS9UJXprDWNlnuz3ipz6iF5lit_5cqzXHmR28deL7H1Tndmq74609byoE5tZ7RRu2ptpfdvwzfKUXgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041026051</pqid></control><display><type>article</type><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><source>EBSCOhost Business Source Complete</source><creator>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</creator><creatorcontrib>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</creatorcontrib><description>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2012.713307</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Activation ; Cognitive models ; Convergence ; Decision making models ; Dynamical systems ; Dynamics ; Fuzzy ; Fuzzy logic ; Gray scale ; Mathematical models ; Neural networks ; Stimuli ; Training</subject><ispartof>Applied artificial intelligence, 2012-09, Vol.26 (8), p.733-742</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</citedby><cites>FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Motlagh, O.</creatorcontrib><creatorcontrib>Tang, S. H.</creatorcontrib><creatorcontrib>Khaksar, W.</creatorcontrib><creatorcontrib>Ismail, N.</creatorcontrib><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><title>Applied artificial intelligence</title><description>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</description><subject>Activation</subject><subject>Cognitive models</subject><subject>Convergence</subject><subject>Decision making models</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Gray scale</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Stimuli</subject><subject>Training</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKffwEPAi5fOvDZtmpOE2m6FtR1bFXYKWdvARrfOZEP27e2YXjx4evDe7__n8UPoEcgISEheSBh63Ac6cgm4IwaeR9gVGvQ35gQ-9a_R4Iw4Z-YW3Vm7IYQAYzBAicixmJbxPBdl-hFjMZvNCxFNcFngJMqwiPp1fypynBRznBVv8TTNx_htmYssjfBiuSjjbHGPbrRqbfPwM4foPYnLaOJMi3EaialTUaAHh1arJqRUq8qlFQ85aBoS7XtcuwEw5RIe-kFdM1hRv9F8pRXRGmpFfXCrwGu8IXq-9O5N93ls7EFu17Zq2lbtmu5oJQQMaMA45z369AfddEez67-TQCgQNyA-9BS9UJXprDWNlnuz3ipz6iF5lit_5cqzXHmR28deL7H1Tndmq74609byoE5tZ7RRu2ptpfdvwzfKUXgw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Motlagh, O.</creator><creator>Tang, S. H.</creator><creator>Khaksar, W.</creator><creator>Ismail, N.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</title><author>Motlagh, O. ; Tang, S. H. ; Khaksar, W. ; Ismail, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-4cbe844fac24c9891f480f539f2617a209856dd71b45ef9bfa0ff1da4512c63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Cognitive models</topic><topic>Convergence</topic><topic>Decision making models</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Gray scale</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Stimuli</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motlagh, O.</creatorcontrib><creatorcontrib>Tang, S. H.</creatorcontrib><creatorcontrib>Khaksar, W.</creatorcontrib><creatorcontrib>Ismail, N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motlagh, O.</au><au>Tang, S. H.</au><au>Khaksar, W.</au><au>Ismail, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS</atitle><jtitle>Applied artificial intelligence</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>26</volume><issue>8</issue><spage>733</spage><epage>742</epage><pages>733-742</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>Recurrent neural models such as fuzzy cognitive maps (FCM) are well established in decision modeling through progressive variations of systems' concepts. However, existing activation functions have shortcomings, such as a lack of sensitivity to weights of initial concepts, which is due to exaggerated focus on the training of networks' causal links. Therefore, in most cases, decision outputs converge toward lower and higher extremes and do not represent gray scales. Another disadvantage is that current models require sufficient time delay for convergence toward results. This makes FCM unable to handle transient changes in input. A new technique has been examined in this article using a real-life example to improve FCM activation in terms of fast response to dynamic stimuli. A simple expert model of hexapod locomotion is developed without focus on weight training. The system's response to stimuli is evaluated through a complete six-phase stride to validate the effectiveness of the developed activation function.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/08839514.2012.713307</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2012-09, Vol.26 (8), p.733-742
issn 0883-9514
1087-6545
language eng
recordid cdi_proquest_journals_1041026051
source EBSCOhost Business Source Complete
subjects Activation
Cognitive models
Convergence
Decision making models
Dynamical systems
Dynamics
Fuzzy
Fuzzy logic
Gray scale
Mathematical models
Neural networks
Stimuli
Training
title AN ALTERNATIVE APPROACH TO FCM ACTIVATION FOR MODELING DYNAMIC SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ALTERNATIVE%20APPROACH%20TO%20FCM%20ACTIVATION%20FOR%20MODELING%20DYNAMIC%20SYSTEMS&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Motlagh,%20O.&rft.date=2012-09-01&rft.volume=26&rft.issue=8&rft.spage=733&rft.epage=742&rft.pages=733-742&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2012.713307&rft_dat=%3Cproquest_cross%3E1671467999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041026051&rft_id=info:pmid/&rfr_iscdi=true