Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding
This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of cor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2012-10, Vol.7 (5), p.1652-1667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 5 |
container_start_page | 1652 |
container_title | IEEE transactions on information forensics and security |
container_volume | 7 |
creator | Farhadzadeh, F. Voloshynovskiy, S. Koval, O. |
description | This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings. |
doi_str_mv | 10.1109/TIFS.2012.2206026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1039017072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6226455</ieee_id><sourcerecordid>1136414535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</originalsourceid><addsrcrecordid>eNpd0M1OAjEUBeCJ0UREH8C4mcSNm8He_s3MElGUhEQTYeNmUtpbUwJTbIcFb28JyMJVT9rvNrkny26BDABI_TibjD8HlAAdUEokofIs64EQskgZzk8Z2GV2FeOSEM5BVr3s6wOD9WGtWo35sFWrXXQx9zYf-bbDtiueVESTT0zKzjqtOufbfB5d-70nsQvKtQlMXfyzz6i9Se_X2YVVq4g3x7Ofzccvs9FbMX1_nYyG00IzWXfFQldElBW3NaW8BgRhgGqoSG1NyWi6Joi8tMyQ0hpRV7I0XGhYKFMqrC3rZw-HfzfB_2wxds3aRY2rlWrRb2MDwCQHLphI9P4fXfptSFsnRVhNoCQlTQoOSgcfY0DbbIJbq7BLqNm33ezbbvZtN8e208zdYcYh4slLSiUXgv0CqBt6cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039017072</pqid></control><display><type>article</type><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><source>IEEE Electronic Library (IEL)</source><creator>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</creator><creatorcontrib>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</creatorcontrib><description>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2012.2206026</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Constrained list-based decoding ; Constraints ; content-based identification ; Correlation ; Decoding ; Decorrelation ; digital fingerprint ; false acceptance error exponent ; Feature extraction ; Fingerprints ; Forensic engineering ; Lists ; Mathematical analysis ; Maximum likelihood decoding ; miss error exponent ; order statistics ; Security ; Statistical analysis ; Studies ; Transforms</subject><ispartof>IEEE transactions on information forensics and security, 2012-10, Vol.7 (5), p.1652-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</citedby><cites>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6226455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6226455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farhadzadeh, F.</creatorcontrib><creatorcontrib>Voloshynovskiy, S.</creatorcontrib><creatorcontrib>Koval, O.</creatorcontrib><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</description><subject>Accuracy</subject><subject>Constrained list-based decoding</subject><subject>Constraints</subject><subject>content-based identification</subject><subject>Correlation</subject><subject>Decoding</subject><subject>Decorrelation</subject><subject>digital fingerprint</subject><subject>false acceptance error exponent</subject><subject>Feature extraction</subject><subject>Fingerprints</subject><subject>Forensic engineering</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood decoding</subject><subject>miss error exponent</subject><subject>order statistics</subject><subject>Security</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Transforms</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0M1OAjEUBeCJ0UREH8C4mcSNm8He_s3MElGUhEQTYeNmUtpbUwJTbIcFb28JyMJVT9rvNrkny26BDABI_TibjD8HlAAdUEokofIs64EQskgZzk8Z2GV2FeOSEM5BVr3s6wOD9WGtWo35sFWrXXQx9zYf-bbDtiueVESTT0zKzjqtOufbfB5d-70nsQvKtQlMXfyzz6i9Se_X2YVVq4g3x7Ofzccvs9FbMX1_nYyG00IzWXfFQldElBW3NaW8BgRhgGqoSG1NyWi6Joi8tMyQ0hpRV7I0XGhYKFMqrC3rZw-HfzfB_2wxds3aRY2rlWrRb2MDwCQHLphI9P4fXfptSFsnRVhNoCQlTQoOSgcfY0DbbIJbq7BLqNm33ezbbvZtN8e208zdYcYh4slLSiUXgv0CqBt6cw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Farhadzadeh, F.</creator><creator>Voloshynovskiy, S.</creator><creator>Koval, O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121001</creationdate><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><author>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Constrained list-based decoding</topic><topic>Constraints</topic><topic>content-based identification</topic><topic>Correlation</topic><topic>Decoding</topic><topic>Decorrelation</topic><topic>digital fingerprint</topic><topic>false acceptance error exponent</topic><topic>Feature extraction</topic><topic>Fingerprints</topic><topic>Forensic engineering</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood decoding</topic><topic>miss error exponent</topic><topic>order statistics</topic><topic>Security</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhadzadeh, F.</creatorcontrib><creatorcontrib>Voloshynovskiy, S.</creatorcontrib><creatorcontrib>Koval, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farhadzadeh, F.</au><au>Voloshynovskiy, S.</au><au>Koval, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>1652</spage><epage>1667</epage><pages>1652-1667</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2012.2206026</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2012-10, Vol.7 (5), p.1652-1667 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_1039017072 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Constrained list-based decoding Constraints content-based identification Correlation Decoding Decorrelation digital fingerprint false acceptance error exponent Feature extraction Fingerprints Forensic engineering Lists Mathematical analysis Maximum likelihood decoding miss error exponent order statistics Security Statistical analysis Studies Transforms |
title | Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Content-Based%20Identification%20Using%20Constrained%20List-Based%20Decoding&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Farhadzadeh,%20F.&rft.date=2012-10-01&rft.volume=7&rft.issue=5&rft.spage=1652&rft.epage=1667&rft.pages=1652-1667&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2012.2206026&rft_dat=%3Cproquest_RIE%3E1136414535%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039017072&rft_id=info:pmid/&rft_ieee_id=6226455&rfr_iscdi=true |