Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding

This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2012-10, Vol.7 (5), p.1652-1667
Hauptverfasser: Farhadzadeh, F., Voloshynovskiy, S., Koval, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1667
container_issue 5
container_start_page 1652
container_title IEEE transactions on information forensics and security
container_volume 7
creator Farhadzadeh, F.
Voloshynovskiy, S.
Koval, O.
description This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.
doi_str_mv 10.1109/TIFS.2012.2206026
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1039017072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6226455</ieee_id><sourcerecordid>1136414535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</originalsourceid><addsrcrecordid>eNpd0M1OAjEUBeCJ0UREH8C4mcSNm8He_s3MElGUhEQTYeNmUtpbUwJTbIcFb28JyMJVT9rvNrkny26BDABI_TibjD8HlAAdUEokofIs64EQskgZzk8Z2GV2FeOSEM5BVr3s6wOD9WGtWo35sFWrXXQx9zYf-bbDtiueVESTT0zKzjqtOufbfB5d-70nsQvKtQlMXfyzz6i9Se_X2YVVq4g3x7Ofzccvs9FbMX1_nYyG00IzWXfFQldElBW3NaW8BgRhgGqoSG1NyWi6Joi8tMyQ0hpRV7I0XGhYKFMqrC3rZw-HfzfB_2wxds3aRY2rlWrRb2MDwCQHLphI9P4fXfptSFsnRVhNoCQlTQoOSgcfY0DbbIJbq7BLqNm33ezbbvZtN8e208zdYcYh4slLSiUXgv0CqBt6cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039017072</pqid></control><display><type>article</type><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><source>IEEE Electronic Library (IEL)</source><creator>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</creator><creatorcontrib>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</creatorcontrib><description>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2012.2206026</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Constrained list-based decoding ; Constraints ; content-based identification ; Correlation ; Decoding ; Decorrelation ; digital fingerprint ; false acceptance error exponent ; Feature extraction ; Fingerprints ; Forensic engineering ; Lists ; Mathematical analysis ; Maximum likelihood decoding ; miss error exponent ; order statistics ; Security ; Statistical analysis ; Studies ; Transforms</subject><ispartof>IEEE transactions on information forensics and security, 2012-10, Vol.7 (5), p.1652-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</citedby><cites>FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6226455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6226455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farhadzadeh, F.</creatorcontrib><creatorcontrib>Voloshynovskiy, S.</creatorcontrib><creatorcontrib>Koval, O.</creatorcontrib><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</description><subject>Accuracy</subject><subject>Constrained list-based decoding</subject><subject>Constraints</subject><subject>content-based identification</subject><subject>Correlation</subject><subject>Decoding</subject><subject>Decorrelation</subject><subject>digital fingerprint</subject><subject>false acceptance error exponent</subject><subject>Feature extraction</subject><subject>Fingerprints</subject><subject>Forensic engineering</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood decoding</subject><subject>miss error exponent</subject><subject>order statistics</subject><subject>Security</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Transforms</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0M1OAjEUBeCJ0UREH8C4mcSNm8He_s3MElGUhEQTYeNmUtpbUwJTbIcFb28JyMJVT9rvNrkny26BDABI_TibjD8HlAAdUEokofIs64EQskgZzk8Z2GV2FeOSEM5BVr3s6wOD9WGtWo35sFWrXXQx9zYf-bbDtiueVESTT0zKzjqtOufbfB5d-70nsQvKtQlMXfyzz6i9Se_X2YVVq4g3x7Ofzccvs9FbMX1_nYyG00IzWXfFQldElBW3NaW8BgRhgGqoSG1NyWi6Joi8tMyQ0hpRV7I0XGhYKFMqrC3rZw-HfzfB_2wxds3aRY2rlWrRb2MDwCQHLphI9P4fXfptSFsnRVhNoCQlTQoOSgcfY0DbbIJbq7BLqNm33ezbbvZtN8e208zdYcYh4slLSiUXgv0CqBt6cw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Farhadzadeh, F.</creator><creator>Voloshynovskiy, S.</creator><creator>Koval, O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20121001</creationdate><title>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</title><author>Farhadzadeh, F. ; Voloshynovskiy, S. ; Koval, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-bc805784f922491e15d12c1809fd732f920ee47f3d07fd59867d45c1bad7ae9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Constrained list-based decoding</topic><topic>Constraints</topic><topic>content-based identification</topic><topic>Correlation</topic><topic>Decoding</topic><topic>Decorrelation</topic><topic>digital fingerprint</topic><topic>false acceptance error exponent</topic><topic>Feature extraction</topic><topic>Fingerprints</topic><topic>Forensic engineering</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood decoding</topic><topic>miss error exponent</topic><topic>order statistics</topic><topic>Security</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farhadzadeh, F.</creatorcontrib><creatorcontrib>Voloshynovskiy, S.</creatorcontrib><creatorcontrib>Koval, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farhadzadeh, F.</au><au>Voloshynovskiy, S.</au><au>Koval, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>1652</spage><epage>1667</epage><pages>1652-1667</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>This paper is dedicated to the performance analysis of content-based identification using binary fingerprints and constrained list-based decoding. We formulate content-based identification as a multiple hypothesis test and develop analytical models of its performance in terms of probabilities of correct detection/miss and false acceptance for a class of statistical models, which captures the correlation between elements of either the content or its extracted features. Furthermore, in order to determine the block/codeword length impact on the identification's accuracy, we analyze exponents of these probabilities of errors. Finally, we develop a probabilistic model, justifying the accuracy of identification based on list decoding by evaluating the position of the queried entry on the output list. The obtained results make it possible to characterize the performance of traditional unique decoding, based on the maximum likelihood for the situations when the decoder fails to produce the correct index. This paper also contains experimental results that confirm theoretical findings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2012.2206026</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2012-10, Vol.7 (5), p.1652-1667
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_1039017072
source IEEE Electronic Library (IEL)
subjects Accuracy
Constrained list-based decoding
Constraints
content-based identification
Correlation
Decoding
Decorrelation
digital fingerprint
false acceptance error exponent
Feature extraction
Fingerprints
Forensic engineering
Lists
Mathematical analysis
Maximum likelihood decoding
miss error exponent
order statistics
Security
Statistical analysis
Studies
Transforms
title Performance Analysis of Content-Based Identification Using Constrained List-Based Decoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20of%20Content-Based%20Identification%20Using%20Constrained%20List-Based%20Decoding&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Farhadzadeh,%20F.&rft.date=2012-10-01&rft.volume=7&rft.issue=5&rft.spage=1652&rft.epage=1667&rft.pages=1652-1667&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2012.2206026&rft_dat=%3Cproquest_RIE%3E1136414535%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039017072&rft_id=info:pmid/&rft_ieee_id=6226455&rfr_iscdi=true