Hierarchical clustering with concave data sets

Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metodološki zvezki (Spletna izd.) 2005-07, Vol.2 (2), p.173
Hauptverfasser: Francetič, Matej, Nagode, Mateja, Nastav, Bojan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 173
container_title Metodološki zvezki (Spletna izd.)
container_volume 2
creator Francetič, Matej
Nagode, Mateja
Nastav, Bojan
description Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the furthest neighbour, Ward's method, between-groups linkage, within-groups linkage, centroid and median clustering. The goal is to assess the performance of different clustering methods when using concave sets of data, and also to figure out in which types of different data structures can these methods reveal and correctly assign group membership. The simulations were run in a two- and threedimensional space. Using different standard deviations of points around the skeleton further modified each of the two original shapes. In this manner various shapes of sets with different inter-cluster distances were generated. Generating the data sets provides the essential knowledge of cluster membership for comparing the clustering methods' performances. Conclusions are important and interesting since real life data seldom follow the simple convex-shaped structure, but need further work, such as the bootstrap application, the inclusion of the dendrogram-based analysis or other data structures. Therefore this paper can serve as a basis for further study of hierarchical clustering performance with concave sets.
doi_str_mv 10.51936/mylp9878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1037802249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2751526231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1378-a97e99c211271d8077669c7ecf8c7dd6a8a7527daa980f69b193d3d1ff7df7273</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxBdRsNQe_AYBTx5S90-St3uUolYoeNFzeL7dtSlpEncTpd_epVVPM4cfM8Mwdi34shRGVXf7QzsYDfqMzYQui5xzJc7_vVSXbBHjjidrFC-0mbHlunEBA20bwjajdoqjC033kX034zajviP8cpnFEbPoxnjFLjy20S1-dc7eHh9eV-t88_L0vLrf5CQU6BwNOGNICiFBWM0BqsoQOPKawNoKNUIpwSIazX1l3tN6q6zwHqwHCWrObk65Q-g_JxfHetdPoUuVteCpgUtZmETdnigKfYzB-XoIzR7DIUH18ZH67xH1A_T3Uoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037802249</pqid></control><display><type>article</type><title>Hierarchical clustering with concave data sets</title><source>Alma/SFX Local Collection</source><creator>Francetič, Matej ; Nagode, Mateja ; Nastav, Bojan</creator><creatorcontrib>Francetič, Matej ; Nagode, Mateja ; Nastav, Bojan</creatorcontrib><description>Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the furthest neighbour, Ward's method, between-groups linkage, within-groups linkage, centroid and median clustering. The goal is to assess the performance of different clustering methods when using concave sets of data, and also to figure out in which types of different data structures can these methods reveal and correctly assign group membership. The simulations were run in a two- and threedimensional space. Using different standard deviations of points around the skeleton further modified each of the two original shapes. In this manner various shapes of sets with different inter-cluster distances were generated. Generating the data sets provides the essential knowledge of cluster membership for comparing the clustering methods' performances. Conclusions are important and interesting since real life data seldom follow the simple convex-shaped structure, but need further work, such as the bootstrap application, the inclusion of the dendrogram-based analysis or other data structures. Therefore this paper can serve as a basis for further study of hierarchical clustering performance with concave sets.</description><identifier>ISSN: 1854-0023</identifier><identifier>EISSN: 1854-0031</identifier><identifier>DOI: 10.51936/mylp9878</identifier><language>eng</language><publisher>Ljubljana: Anuska Ferligoj</publisher><subject>Algorithms ; Cluster analysis ; Methods ; Studies</subject><ispartof>Metodološki zvezki (Spletna izd.), 2005-07, Vol.2 (2), p.173</ispartof><rights>Copyright Anuska Ferligoj 2005</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1378-a97e99c211271d8077669c7ecf8c7dd6a8a7527daa980f69b193d3d1ff7df7273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Francetič, Matej</creatorcontrib><creatorcontrib>Nagode, Mateja</creatorcontrib><creatorcontrib>Nastav, Bojan</creatorcontrib><title>Hierarchical clustering with concave data sets</title><title>Metodološki zvezki (Spletna izd.)</title><description>Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the furthest neighbour, Ward's method, between-groups linkage, within-groups linkage, centroid and median clustering. The goal is to assess the performance of different clustering methods when using concave sets of data, and also to figure out in which types of different data structures can these methods reveal and correctly assign group membership. The simulations were run in a two- and threedimensional space. Using different standard deviations of points around the skeleton further modified each of the two original shapes. In this manner various shapes of sets with different inter-cluster distances were generated. Generating the data sets provides the essential knowledge of cluster membership for comparing the clustering methods' performances. Conclusions are important and interesting since real life data seldom follow the simple convex-shaped structure, but need further work, such as the bootstrap application, the inclusion of the dendrogram-based analysis or other data structures. Therefore this paper can serve as a basis for further study of hierarchical clustering performance with concave sets.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Methods</subject><subject>Studies</subject><issn>1854-0023</issn><issn>1854-0031</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9Lw0AUxBdRsNQe_AYBTx5S90-St3uUolYoeNFzeL7dtSlpEncTpd_epVVPM4cfM8Mwdi34shRGVXf7QzsYDfqMzYQui5xzJc7_vVSXbBHjjidrFC-0mbHlunEBA20bwjajdoqjC033kX034zajviP8cpnFEbPoxnjFLjy20S1-dc7eHh9eV-t88_L0vLrf5CQU6BwNOGNICiFBWM0BqsoQOPKawNoKNUIpwSIazX1l3tN6q6zwHqwHCWrObk65Q-g_JxfHetdPoUuVteCpgUtZmETdnigKfYzB-XoIzR7DIUH18ZH67xH1A_T3Uoc</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Francetič, Matej</creator><creator>Nagode, Mateja</creator><creator>Nastav, Bojan</creator><general>Anuska Ferligoj</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20050701</creationdate><title>Hierarchical clustering with concave data sets</title><author>Francetič, Matej ; Nagode, Mateja ; Nastav, Bojan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1378-a97e99c211271d8077669c7ecf8c7dd6a8a7527daa980f69b193d3d1ff7df7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Methods</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Francetič, Matej</creatorcontrib><creatorcontrib>Nagode, Mateja</creatorcontrib><creatorcontrib>Nastav, Bojan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Metodološki zvezki (Spletna izd.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francetič, Matej</au><au>Nagode, Mateja</au><au>Nastav, Bojan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical clustering with concave data sets</atitle><jtitle>Metodološki zvezki (Spletna izd.)</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>2</volume><issue>2</issue><spage>173</spage><pages>173-</pages><issn>1854-0023</issn><eissn>1854-0031</eissn><abstract>Clustering methods are among the most widely used methods in multivariate analysis. Two main groups of clustering methods can be distinguished: hierarchical and non-hierarchical. Due to the nature of the problem examined, this paper focuses on hierarchical methods such as the nearest neighbour, the furthest neighbour, Ward's method, between-groups linkage, within-groups linkage, centroid and median clustering. The goal is to assess the performance of different clustering methods when using concave sets of data, and also to figure out in which types of different data structures can these methods reveal and correctly assign group membership. The simulations were run in a two- and threedimensional space. Using different standard deviations of points around the skeleton further modified each of the two original shapes. In this manner various shapes of sets with different inter-cluster distances were generated. Generating the data sets provides the essential knowledge of cluster membership for comparing the clustering methods' performances. Conclusions are important and interesting since real life data seldom follow the simple convex-shaped structure, but need further work, such as the bootstrap application, the inclusion of the dendrogram-based analysis or other data structures. Therefore this paper can serve as a basis for further study of hierarchical clustering performance with concave sets.</abstract><cop>Ljubljana</cop><pub>Anuska Ferligoj</pub><doi>10.51936/mylp9878</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1854-0023
ispartof Metodološki zvezki (Spletna izd.), 2005-07, Vol.2 (2), p.173
issn 1854-0023
1854-0031
language eng
recordid cdi_proquest_journals_1037802249
source Alma/SFX Local Collection
subjects Algorithms
Cluster analysis
Methods
Studies
title Hierarchical clustering with concave data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20clustering%20with%20concave%20data%20sets&rft.jtitle=Metodolo%C5%A1ki%20zvezki%20(Spletna%20izd.)&rft.au=Franceti%C4%8D,%20Matej&rft.date=2005-07-01&rft.volume=2&rft.issue=2&rft.spage=173&rft.pages=173-&rft.issn=1854-0023&rft.eissn=1854-0031&rft_id=info:doi/10.51936/mylp9878&rft_dat=%3Cproquest_cross%3E2751526231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037802249&rft_id=info:pmid/&rfr_iscdi=true