FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS
A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast impl...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2012-01, Vol.50 (3), p.1713-1734 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1734 |
---|---|
container_issue | 3 |
container_start_page | 1713 |
container_title | SIAM journal on numerical analysis |
container_volume | 50 |
creator | PACHÓN, RICARDO GONNET, PEDRO VAN DEUN, JORIS |
description | A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast implementation using the fast Fourier transform. The method is generalized for arbitrary grids, which requires the construction of polynomials orthogonal on the set of interpolation nodes. The appearance of common factors in the numerator and denominator due to finite-precision arithmetic is explained by the behavior of the singular values of the linear system associated with the rational interpolation problem. The new algorithm has connections with other methods, particularly the work of Jacobi and Kronecker, Berrut and Mittelmann, and Egecioglu and Koç. Short MATLAB codes and numerical experiments are included. |
doi_str_mv | 10.1137/100797291 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1037526437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41582963</jstor_id><sourcerecordid>41582963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-7ee13b5324c397f0e2e50cb9a3515b970fa639d99162d50024e243eebf5e52113</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKzVgz9AWPDkIbqzH9nuMa2pDcRsabZCTyFJN2BRU3fbg__etZWehheemWEGoVsgjwBMPgEhUkmq4AwNgCgRSZDkHA0IYXEEnKpLdOX9hoQ8AjZAr9OkNDgpnnFpknGe4kViMl0kOc4Kky7mOj_kkPBCa1NiPcXLIjOrQ89klo5X5Sx9w3MdfHmNLrr6w9ub_zpEy2lqJrMo1y_ZJMmjlgHfRdJaYI1glLdMyY5YagVpG1UzAaJRknR1zNRaKYjpWhBCuaWcWdt0wgoa7hyi--Pcreu_99bvqk2_d19hZQWESUFjzmRQD0fVut57Z7tq694_a_cTUPX3rer0rWDvjnbjd707QQ5iRFXM2C9TWlxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037526437</pqid></control><display><type>article</type><title>FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>PACHÓN, RICARDO ; GONNET, PEDRO ; VAN DEUN, JORIS</creator><creatorcontrib>PACHÓN, RICARDO ; GONNET, PEDRO ; VAN DEUN, JORIS</creatorcontrib><description>A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast implementation using the fast Fourier transform. The method is generalized for arbitrary grids, which requires the construction of polynomials orthogonal on the set of interpolation nodes. The appearance of common factors in the numerator and denominator due to finite-precision arithmetic is explained by the behavior of the singular values of the linear system associated with the rational interpolation problem. The new algorithm has connections with other methods, particularly the work of Jacobi and Kronecker, Berrut and Mittelmann, and Egecioglu and Koç. Short MATLAB codes and numerical experiments are included.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/100797291</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Coefficients ; Fourier transforms ; Interpolation ; Mathematical functions ; Mathematical vectors ; Matrices ; Methods ; Polynomials ; Rational functions ; Zero</subject><ispartof>SIAM journal on numerical analysis, 2012-01, Vol.50 (3), p.1713-1734</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-7ee13b5324c397f0e2e50cb9a3515b970fa639d99162d50024e243eebf5e52113</citedby><cites>FETCH-LOGICAL-c314t-7ee13b5324c397f0e2e50cb9a3515b970fa639d99162d50024e243eebf5e52113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41582963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41582963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>PACHÓN, RICARDO</creatorcontrib><creatorcontrib>GONNET, PEDRO</creatorcontrib><creatorcontrib>VAN DEUN, JORIS</creatorcontrib><title>FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS</title><title>SIAM journal on numerical analysis</title><description>A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast implementation using the fast Fourier transform. The method is generalized for arbitrary grids, which requires the construction of polynomials orthogonal on the set of interpolation nodes. The appearance of common factors in the numerator and denominator due to finite-precision arithmetic is explained by the behavior of the singular values of the linear system associated with the rational interpolation problem. The new algorithm has connections with other methods, particularly the work of Jacobi and Kronecker, Berrut and Mittelmann, and Egecioglu and Koç. Short MATLAB codes and numerical experiments are included.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Coefficients</subject><subject>Fourier transforms</subject><subject>Interpolation</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Methods</subject><subject>Polynomials</subject><subject>Rational functions</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1Lw0AQBuBFFKzVgz9AWPDkIbqzH9nuMa2pDcRsabZCTyFJN2BRU3fbg__etZWehheemWEGoVsgjwBMPgEhUkmq4AwNgCgRSZDkHA0IYXEEnKpLdOX9hoQ8AjZAr9OkNDgpnnFpknGe4kViMl0kOc4Kky7mOj_kkPBCa1NiPcXLIjOrQ89klo5X5Sx9w3MdfHmNLrr6w9ub_zpEy2lqJrMo1y_ZJMmjlgHfRdJaYI1glLdMyY5YagVpG1UzAaJRknR1zNRaKYjpWhBCuaWcWdt0wgoa7hyi--Pcreu_99bvqk2_d19hZQWESUFjzmRQD0fVut57Z7tq694_a_cTUPX3rer0rWDvjnbjd707QQ5iRFXM2C9TWlxs</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>PACHÓN, RICARDO</creator><creator>GONNET, PEDRO</creator><creator>VAN DEUN, JORIS</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS</title><author>PACHÓN, RICARDO ; GONNET, PEDRO ; VAN DEUN, JORIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-7ee13b5324c397f0e2e50cb9a3515b970fa639d99162d50024e243eebf5e52113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Coefficients</topic><topic>Fourier transforms</topic><topic>Interpolation</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Methods</topic><topic>Polynomials</topic><topic>Rational functions</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PACHÓN, RICARDO</creatorcontrib><creatorcontrib>GONNET, PEDRO</creatorcontrib><creatorcontrib>VAN DEUN, JORIS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PACHÓN, RICARDO</au><au>GONNET, PEDRO</au><au>VAN DEUN, JORIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>50</volume><issue>3</issue><spage>1713</spage><epage>1734</epage><pages>1713-1734</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A new method for interpolation by rational functions of prescribed numerator and denominator degrees is presented. When the interpolation nodes are roots of unity or Chebyshev points, the algorithm is particularly simple and relies on discrete Fourier transform matrices, which results in a fast implementation using the fast Fourier transform. The method is generalized for arbitrary grids, which requires the construction of polynomials orthogonal on the set of interpolation nodes. The appearance of common factors in the numerator and denominator due to finite-precision arithmetic is explained by the behavior of the singular values of the linear system associated with the rational interpolation problem. The new algorithm has connections with other methods, particularly the work of Jacobi and Kronecker, Berrut and Mittelmann, and Egecioglu and Koç. Short MATLAB codes and numerical experiments are included.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100797291</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2012-01, Vol.50 (3), p.1713-1734 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_1037526437 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algorithms Approximation Coefficients Fourier transforms Interpolation Mathematical functions Mathematical vectors Matrices Methods Polynomials Rational functions Zero |
title | FAST AND STABLE RATIONAL INTERPOLATION IN ROOTS OF UNITY AND CHEBYSHEV POINTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAST%20AND%20STABLE%20RATIONAL%20INTERPOLATION%20IN%20ROOTS%20OF%20UNITY%20AND%20CHEBYSHEV%20POINTS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=PACH%C3%93N,%20RICARDO&rft.date=2012-01-01&rft.volume=50&rft.issue=3&rft.spage=1713&rft.epage=1734&rft.pages=1713-1734&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/100797291&rft_dat=%3Cjstor_proqu%3E41582963%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037526437&rft_id=info:pmid/&rft_jstor_id=41582963&rfr_iscdi=true |