OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM
We discuss the optimal allocation problem in combinatorial auctions, where the items are allocated to bidders so that the sum of the bidders' utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of such utility functions...
Gespeichert in:
Veröffentlicht in: | Journal of the Operations Research Society of Japan 2012, Vol.55(1), pp.92-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | Journal of the Operations Research Society of Japan |
container_volume | 55 |
creator | Shioura, Akiyoshi Suzuki, Shunya |
description | We discuss the optimal allocation problem in combinatorial auctions, where the items are allocated to bidders so that the sum of the bidders' utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of such utility functions has a succinct representation but is sufficiently general. The main aim of this paper is to show the computational complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time exact/approximation algorithms. These results are given by using the relationship with graph cut problems such as the min/max cut problem and the multiway cut problem. |
doi_str_mv | 10.15807/jorsj.55.92 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1037346535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749185371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3482-bd46ab614cfccf77c371e150d867cd339c0f16a111f4e358709303f2fd25b7393</originalsourceid><addsrcrecordid>eNpF0FFPwjAQB_DGaCKib36AJr46bNd27R7nBFYdbI4uxqdllA1ZkGEHD357B1N8uUsuv7tL_gDcYjTATCD-UNWmqQaMDVz7DPRsLIQlbNc9Bz1EGbEow_QSXDVNhRDimKMeWEaxkhMvhF4YRr6nZDSFcRI9hsMJfJMqgK-p95S0cx-mSoZSvcNROvUPbga96ROUagaTYXjcnAUy7rbGiRcH0E_V37FrcFHm66a4-e19kI6Gyg-sMBpL3wstTaiwrfmCOvncwVSXWpeca8JxgRlaCIfrBSGuRiV2coxxSQvCBEcuQaS0y4XN5py4pA_uurtbU3_ti2aXVfXebNqXGUaEE-owwlp13ylt6qYxRZltzeozN98tyo5RZscoM8Yy12657HjV7PJlccK52a30uvi3-FBentt0kUCYM8pPRn_kJis25AcWZHgD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037346535</pqid></control><display><type>article</type><title>OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM</title><source>Freely Accessible Japanese Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shioura, Akiyoshi ; Suzuki, Shunya</creator><creatorcontrib>Shioura, Akiyoshi ; Suzuki, Shunya</creatorcontrib><description>We discuss the optimal allocation problem in combinatorial auctions, where the items are allocated to bidders so that the sum of the bidders' utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of such utility functions has a succinct representation but is sufficiently general. The main aim of this paper is to show the computational complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time exact/approximation algorithms. These results are given by using the relationship with graph cut problems such as the min/max cut problem and the multiway cut problem.</description><identifier>ISSN: 0453-4514</identifier><identifier>EISSN: 2188-8299</identifier><identifier>EISSN: 1878-6871</identifier><identifier>DOI: 10.15807/jorsj.55.92</identifier><language>eng</language><publisher>Tokyo: The Operations Research Society of Japan</publisher><subject>Algorithms ; allocation problem ; Auctions ; Combinatorial analysis ; combinatorial auction ; Combinatorial optimization ; graph cut ; Mathematical models ; Optimization algorithms ; Polynomials ; Quadratic equations ; Studies ; submodular function ; supermodular function ; Utilities</subject><ispartof>Journal of the Operations Research Society of Japan, 2012, Vol.55(1), pp.92-105</ispartof><rights>2012 The Operations Research Society of Japan</rights><rights>Copyright Nihon Opereshonzu Risachi Gakkai, Operations Research Society of Japan 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3482-bd46ab614cfccf77c371e150d867cd339c0f16a111f4e358709303f2fd25b7393</citedby><cites>FETCH-LOGICAL-c3482-bd46ab614cfccf77c371e150d867cd339c0f16a111f4e358709303f2fd25b7393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Shioura, Akiyoshi</creatorcontrib><creatorcontrib>Suzuki, Shunya</creatorcontrib><title>OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM</title><title>Journal of the Operations Research Society of Japan</title><addtitle>JORSJ</addtitle><description>We discuss the optimal allocation problem in combinatorial auctions, where the items are allocated to bidders so that the sum of the bidders' utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of such utility functions has a succinct representation but is sufficiently general. The main aim of this paper is to show the computational complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time exact/approximation algorithms. These results are given by using the relationship with graph cut problems such as the min/max cut problem and the multiway cut problem.</description><subject>Algorithms</subject><subject>allocation problem</subject><subject>Auctions</subject><subject>Combinatorial analysis</subject><subject>combinatorial auction</subject><subject>Combinatorial optimization</subject><subject>graph cut</subject><subject>Mathematical models</subject><subject>Optimization algorithms</subject><subject>Polynomials</subject><subject>Quadratic equations</subject><subject>Studies</subject><subject>submodular function</subject><subject>supermodular function</subject><subject>Utilities</subject><issn>0453-4514</issn><issn>2188-8299</issn><issn>1878-6871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpF0FFPwjAQB_DGaCKib36AJr46bNd27R7nBFYdbI4uxqdllA1ZkGEHD357B1N8uUsuv7tL_gDcYjTATCD-UNWmqQaMDVz7DPRsLIQlbNc9Bz1EGbEow_QSXDVNhRDimKMeWEaxkhMvhF4YRr6nZDSFcRI9hsMJfJMqgK-p95S0cx-mSoZSvcNROvUPbga96ROUagaTYXjcnAUy7rbGiRcH0E_V37FrcFHm66a4-e19kI6Gyg-sMBpL3wstTaiwrfmCOvncwVSXWpeca8JxgRlaCIfrBSGuRiV2coxxSQvCBEcuQaS0y4XN5py4pA_uurtbU3_ti2aXVfXebNqXGUaEE-owwlp13ylt6qYxRZltzeozN98tyo5RZscoM8Yy12657HjV7PJlccK52a30uvi3-FBentt0kUCYM8pPRn_kJis25AcWZHgD</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Shioura, Akiyoshi</creator><creator>Suzuki, Shunya</creator><general>The Operations Research Society of Japan</general><general>Nihon Opereshonzu Risachi Gakkai, Operations Research Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM</title><author>Shioura, Akiyoshi ; Suzuki, Shunya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3482-bd46ab614cfccf77c371e150d867cd339c0f16a111f4e358709303f2fd25b7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>allocation problem</topic><topic>Auctions</topic><topic>Combinatorial analysis</topic><topic>combinatorial auction</topic><topic>Combinatorial optimization</topic><topic>graph cut</topic><topic>Mathematical models</topic><topic>Optimization algorithms</topic><topic>Polynomials</topic><topic>Quadratic equations</topic><topic>Studies</topic><topic>submodular function</topic><topic>supermodular function</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shioura, Akiyoshi</creatorcontrib><creatorcontrib>Suzuki, Shunya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Operations Research Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shioura, Akiyoshi</au><au>Suzuki, Shunya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM</atitle><jtitle>Journal of the Operations Research Society of Japan</jtitle><addtitle>JORSJ</addtitle><date>2012</date><risdate>2012</risdate><volume>55</volume><issue>1</issue><spage>92</spage><epage>105</epage><pages>92-105</pages><issn>0453-4514</issn><eissn>2188-8299</eissn><eissn>1878-6871</eissn><abstract>We discuss the optimal allocation problem in combinatorial auctions, where the items are allocated to bidders so that the sum of the bidders' utilities is maximized. In this paper, we consider the case where utility functions are given by quadratic functions; the class of such utility functions has a succinct representation but is sufficiently general. The main aim of this paper is to show the computational complexity of the optimal allocation problem with quadratic utility functions. We consider the cases where utility functions are submodular and supermodular, and show NP-hardness and/or polynomial-time exact/approximation algorithms. These results are given by using the relationship with graph cut problems such as the min/max cut problem and the multiway cut problem.</abstract><cop>Tokyo</cop><pub>The Operations Research Society of Japan</pub><doi>10.15807/jorsj.55.92</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0453-4514 |
ispartof | Journal of the Operations Research Society of Japan, 2012, Vol.55(1), pp.92-105 |
issn | 0453-4514 2188-8299 1878-6871 |
language | eng |
recordid | cdi_proquest_journals_1037346535 |
source | Freely Accessible Japanese Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms allocation problem Auctions Combinatorial analysis combinatorial auction Combinatorial optimization graph cut Mathematical models Optimization algorithms Polynomials Quadratic equations Studies submodular function supermodular function Utilities |
title | OPTIMAL ALLOCATION PROBLEM WITH QUADRATIC UTILITY FUNCTIONS AND ITS RELATIONSHIP WITH GRAPH CUT PROBLEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20ALLOCATION%20PROBLEM%20WITH%20QUADRATIC%20UTILITY%20FUNCTIONS%20AND%20ITS%20RELATIONSHIP%20WITH%20GRAPH%20CUT%20PROBLEM&rft.jtitle=Journal%20of%20the%20Operations%20Research%20Society%20of%20Japan&rft.au=Shioura,%20Akiyoshi&rft.date=2012&rft.volume=55&rft.issue=1&rft.spage=92&rft.epage=105&rft.pages=92-105&rft.issn=0453-4514&rft.eissn=2188-8299&rft_id=info:doi/10.15807/jorsj.55.92&rft_dat=%3Cproquest_cross%3E2749185371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037346535&rft_id=info:pmid/&rfr_iscdi=true |