Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle
We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg‐Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai‐type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possi...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Solid Earth 2012-08, Vol.117 (B8), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B8 |
container_start_page | |
container_title | Journal of Geophysical Research: Solid Earth |
container_volume | 117 |
creator | Nakajima, Yoichi Frost, Daniel J. Rubie, David C. |
description | We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg‐Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai‐type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possible level. As the system was Al‐free the presence of metallic Fe ensures low ferric iron (Fe3+) contents in all phases. The results are used to extract thermodynamic data to describe Fe2+‐Mg partitioning. A thermodynamic assessment and modeling of the available high‐pressure partitioning data indicates that the influence of a Fe‐spin transition in Fp on Fe‐Mg partitioning may be more subtle than previously proposed. Furthermore, we demonstrate that a comparison between perovskite Fe2+ contents predicted by the thermodynamic model and previously reported perovskite analyses can be used to estimate Mg‐Pv Fe3+ concentrations of both Al‐bearing and Al‐free phases in the previous studies. These estimates show that the Fe3+ content of Al‐free Mg‐Pv depends strongly on oxygen fugacity, and varies accordingly with the capsule materials used in experiments. The relationship between Fe3+ and Al concentrations in Al‐bearing Mg‐Pv indicates that the substitution mechanism of Fe3+ and Al changes with Al content. Chemical heterogeneities in the lower mantle will result in the formation of Mg‐Pv with quite different Al and bulk Fe concentrations, which will cause important differences in Fe3+ and oxygen vacancy concentrations in Mg‐Pv.
Key Points
New thermodynamic model for Fe2+‐Mg partitioning between Mg‐Pv and Fp
Effect of spin crossover in Fp on Fe‐Mg partitioning may be more subtle
Fe3+ contents of Mg‐Pv are related to fo2, Al content, and bulk Fe content |
doi_str_mv | 10.1029/2012JB009151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1033173255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734349431</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5028-cbd174a067447963768dea7ed7d67b1d8fb9956c216f86b2e42e82fee3b9c6983</originalsourceid><addsrcrecordid>eNp9kMFu1DAURS0EEqPSHR9gCSE2pNjPiZ0sadWZUiqQ0CC6sxznpXWbsVM7w9C_4JPxNFXVFd7Yejr3XOsR8pazI86g-QSMw_kxYw2v-AuyAF7JAoDBS7JgvKwLBqBek8OUblg-ZSVLxhfk7xJjDNtEXQyejiZObnLBO39FW5x2iJ5uzJXH5LYbmtzgrJmQjhjD73Tr8tP4jvZ7R545O5g0j6ZrpDZsxpAefDT0z0POPwCnue76Q6JD2GHMPX4a8A151Zsh4eHjfUB-Lk_XJ2fFxffVl5PPF4WpGNSFbTuuSsOkKkvVSKFk3aFR2KlOqpZ3dd82TSUtcNnXsgUsAWvoEUXbWNnU4oC8m71jDHdbTJO-Cdvoc6XmTAiuBFRVpj7OlI0hpYi9HqPbmHifIb1fu36-9oy_f5SaZM3QR-OtS08ZkEKKslGZEzO3cwPe_9epz1c_jrkCvv9yMadcmvDPU8rEWy2VUJX-9W2l2fqruFwv1_pS_AM6bqJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033173255</pqid></control><display><type>article</type><title>Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Nakajima, Yoichi ; Frost, Daniel J. ; Rubie, David C.</creator><creatorcontrib>Nakajima, Yoichi ; Frost, Daniel J. ; Rubie, David C.</creatorcontrib><description>We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg‐Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai‐type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possible level. As the system was Al‐free the presence of metallic Fe ensures low ferric iron (Fe3+) contents in all phases. The results are used to extract thermodynamic data to describe Fe2+‐Mg partitioning. A thermodynamic assessment and modeling of the available high‐pressure partitioning data indicates that the influence of a Fe‐spin transition in Fp on Fe‐Mg partitioning may be more subtle than previously proposed. Furthermore, we demonstrate that a comparison between perovskite Fe2+ contents predicted by the thermodynamic model and previously reported perovskite analyses can be used to estimate Mg‐Pv Fe3+ concentrations of both Al‐bearing and Al‐free phases in the previous studies. These estimates show that the Fe3+ content of Al‐free Mg‐Pv depends strongly on oxygen fugacity, and varies accordingly with the capsule materials used in experiments. The relationship between Fe3+ and Al concentrations in Al‐bearing Mg‐Pv indicates that the substitution mechanism of Fe3+ and Al changes with Al content. Chemical heterogeneities in the lower mantle will result in the formation of Mg‐Pv with quite different Al and bulk Fe concentrations, which will cause important differences in Fe3+ and oxygen vacancy concentrations in Mg‐Pv.
Key Points
New thermodynamic model for Fe2+‐Mg partitioning between Mg‐Pv and Fp
Effect of spin crossover in Fp on Fe‐Mg partitioning may be more subtle
Fe3+ contents of Mg‐Pv are related to fo2, Al content, and bulk Fe content</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009151</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Crystals ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; ferropericlase ; Geochemistry ; Geophysics ; iron partitioning ; Lower mantle ; lower-mantle chemistry ; Magnesium silicates ; Mineralogy ; Minerals ; Oxygen ; perovskite ; Petrology ; Thermodynamics</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5028-cbd174a067447963768dea7ed7d67b1d8fb9956c216f86b2e42e82fee3b9c6983</citedby><cites>FETCH-LOGICAL-a5028-cbd174a067447963768dea7ed7d67b1d8fb9956c216f86b2e42e82fee3b9c6983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JB009151$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JB009151$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11512,27922,27923,45572,45573,46407,46466,46831,46890</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Yoichi</creatorcontrib><creatorcontrib>Frost, Daniel J.</creatorcontrib><creatorcontrib>Rubie, David C.</creatorcontrib><title>Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg‐Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai‐type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possible level. As the system was Al‐free the presence of metallic Fe ensures low ferric iron (Fe3+) contents in all phases. The results are used to extract thermodynamic data to describe Fe2+‐Mg partitioning. A thermodynamic assessment and modeling of the available high‐pressure partitioning data indicates that the influence of a Fe‐spin transition in Fp on Fe‐Mg partitioning may be more subtle than previously proposed. Furthermore, we demonstrate that a comparison between perovskite Fe2+ contents predicted by the thermodynamic model and previously reported perovskite analyses can be used to estimate Mg‐Pv Fe3+ concentrations of both Al‐bearing and Al‐free phases in the previous studies. These estimates show that the Fe3+ content of Al‐free Mg‐Pv depends strongly on oxygen fugacity, and varies accordingly with the capsule materials used in experiments. The relationship between Fe3+ and Al concentrations in Al‐bearing Mg‐Pv indicates that the substitution mechanism of Fe3+ and Al changes with Al content. Chemical heterogeneities in the lower mantle will result in the formation of Mg‐Pv with quite different Al and bulk Fe concentrations, which will cause important differences in Fe3+ and oxygen vacancy concentrations in Mg‐Pv.
Key Points
New thermodynamic model for Fe2+‐Mg partitioning between Mg‐Pv and Fp
Effect of spin crossover in Fp on Fe‐Mg partitioning may be more subtle
Fe3+ contents of Mg‐Pv are related to fo2, Al content, and bulk Fe content</description><subject>Crystals</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>ferropericlase</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>iron partitioning</subject><subject>Lower mantle</subject><subject>lower-mantle chemistry</subject><subject>Magnesium silicates</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Oxygen</subject><subject>perovskite</subject><subject>Petrology</subject><subject>Thermodynamics</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFu1DAURS0EEqPSHR9gCSE2pNjPiZ0sadWZUiqQ0CC6sxznpXWbsVM7w9C_4JPxNFXVFd7Yejr3XOsR8pazI86g-QSMw_kxYw2v-AuyAF7JAoDBS7JgvKwLBqBek8OUblg-ZSVLxhfk7xJjDNtEXQyejiZObnLBO39FW5x2iJ5uzJXH5LYbmtzgrJmQjhjD73Tr8tP4jvZ7R545O5g0j6ZrpDZsxpAefDT0z0POPwCnue76Q6JD2GHMPX4a8A151Zsh4eHjfUB-Lk_XJ2fFxffVl5PPF4WpGNSFbTuuSsOkKkvVSKFk3aFR2KlOqpZ3dd82TSUtcNnXsgUsAWvoEUXbWNnU4oC8m71jDHdbTJO-Cdvoc6XmTAiuBFRVpj7OlI0hpYi9HqPbmHifIb1fu36-9oy_f5SaZM3QR-OtS08ZkEKKslGZEzO3cwPe_9epz1c_jrkCvv9yMadcmvDPU8rEWy2VUJX-9W2l2fqruFwv1_pS_AM6bqJS</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Nakajima, Yoichi</creator><creator>Frost, Daniel J.</creator><creator>Rubie, David C.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201208</creationdate><title>Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle</title><author>Nakajima, Yoichi ; Frost, Daniel J. ; Rubie, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5028-cbd174a067447963768dea7ed7d67b1d8fb9956c216f86b2e42e82fee3b9c6983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Crystals</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>ferropericlase</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>iron partitioning</topic><topic>Lower mantle</topic><topic>lower-mantle chemistry</topic><topic>Magnesium silicates</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Oxygen</topic><topic>perovskite</topic><topic>Petrology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Yoichi</creatorcontrib><creatorcontrib>Frost, Daniel J.</creatorcontrib><creatorcontrib>Rubie, David C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Yoichi</au><au>Frost, Daniel J.</au><au>Rubie, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>117</volume><issue>B8</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>We have investigated the exchange of Fe and Mg between magnesium silicate perovskite (Mg‐Pv) and ferropericlase (Fp) at 25 GPa and 2400 to 2600 K using a Kawai‐type multianvil apparatus. Each experiment was performed with coexisting metallic Fe, which buffered the oxygen fugacity at the lowest possible level. As the system was Al‐free the presence of metallic Fe ensures low ferric iron (Fe3+) contents in all phases. The results are used to extract thermodynamic data to describe Fe2+‐Mg partitioning. A thermodynamic assessment and modeling of the available high‐pressure partitioning data indicates that the influence of a Fe‐spin transition in Fp on Fe‐Mg partitioning may be more subtle than previously proposed. Furthermore, we demonstrate that a comparison between perovskite Fe2+ contents predicted by the thermodynamic model and previously reported perovskite analyses can be used to estimate Mg‐Pv Fe3+ concentrations of both Al‐bearing and Al‐free phases in the previous studies. These estimates show that the Fe3+ content of Al‐free Mg‐Pv depends strongly on oxygen fugacity, and varies accordingly with the capsule materials used in experiments. The relationship between Fe3+ and Al concentrations in Al‐bearing Mg‐Pv indicates that the substitution mechanism of Fe3+ and Al changes with Al content. Chemical heterogeneities in the lower mantle will result in the formation of Mg‐Pv with quite different Al and bulk Fe concentrations, which will cause important differences in Fe3+ and oxygen vacancy concentrations in Mg‐Pv.
Key Points
New thermodynamic model for Fe2+‐Mg partitioning between Mg‐Pv and Fp
Effect of spin crossover in Fp on Fe‐Mg partitioning may be more subtle
Fe3+ contents of Mg‐Pv are related to fo2, Al content, and bulk Fe content</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009151</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a |
issn | 0148-0227 2169-9313 2156-2202 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_1033173255 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | Crystals Earth sciences Earth, ocean, space Exact sciences and technology ferropericlase Geochemistry Geophysics iron partitioning Lower mantle lower-mantle chemistry Magnesium silicates Mineralogy Minerals Oxygen perovskite Petrology Thermodynamics |
title | Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferrous%20iron%20partitioning%20between%20magnesium%20silicate%20perovskite%20and%20ferropericlase%20and%20the%20composition%20of%20perovskite%20in%20the%20Earth's%20lower%20mantle&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Nakajima,%20Yoichi&rft.date=2012-08&rft.volume=117&rft.issue=B8&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JB009151&rft_dat=%3Cproquest_cross%3E2734349431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033173255&rft_id=info:pmid/&rfr_iscdi=true |