Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude
We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detecti...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Solid Earth 2012-08, Vol.117 (B8), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B8 |
container_start_page | |
container_title | Journal of Geophysical Research: Solid Earth |
container_volume | 117 |
creator | Mignan, A. |
description | We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.
Key Points
The FMD shape is a function of Mc heterogeneities
The elemental FMD (Mc constant) has an angular shape
The FMD model based on the cumulative normal distribution overestimates Mc |
doi_str_mv | 10.1029/2012JB009347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1033170974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734349461</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</originalsourceid><addsrcrecordid>eNp9kE1L7DAUhoNcwUHd-QMC4s5e851m6cidqgwKorgzpOmJU-20Y9JynX9vh5HBlWdzNs_zcs6L0Aklfylh5oIRym6nhBgu9B6aMCpVxhhhf9CEUJFnhDF9gI5TeiPjCKkEoRP0Mhta39dd6xqcFm4FuAu4XwAGF_vFx-DeAYcIHwO0fp0t3Wtb90MFuKpTH-ty2KjYtRX23XLVQA8tpIR33BHaD65JcPy9D9HT7N_j1XU2vy9uri7nmZNC8swpw4Aoo7SB0udQlqLKSx5yr7gXMpTGU0MDEd5BXjLuwUDwWlXaVJIozw_R6TZ3Fbvx1tTbt26I41PJUsI51cRoMVLnW8rHLqUIwa5ivXRxPUJ2U6L9WeKIn32HuuRdE6JrfZ12DlNccUk2HN9y_-sG1r9m2tviYUo1k3y0sq01NgmfO8vFd6s019I-3xV2_vwoeDGd2YJ_AaMfkGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033170974</pqid></control><display><type>article</type><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Mignan, A.</creator><creatorcontrib>Mignan, A.</creatorcontrib><description>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.
Key Points
The FMD shape is a function of Mc heterogeneities
The elemental FMD (Mc constant) has an angular shape
The FMD model based on the cumulative normal distribution overestimates Mc</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009347</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>completeness magnitude ; Earth sciences ; Earth, ocean, space ; Earthquakes ; Exact sciences and technology ; FMD ; Geophysics ; Plate tectonics ; Scientific apparatus & instruments ; Seismic activity ; seismic network ; Seismology ; Spatial distribution ; synthetic catalogue</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</citedby><cites>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JB009347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JB009347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363507$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mignan, A.</creatorcontrib><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.
Key Points
The FMD shape is a function of Mc heterogeneities
The elemental FMD (Mc constant) has an angular shape
The FMD model based on the cumulative normal distribution overestimates Mc</description><subject>completeness magnitude</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>FMD</subject><subject>Geophysics</subject><subject>Plate tectonics</subject><subject>Scientific apparatus & instruments</subject><subject>Seismic activity</subject><subject>seismic network</subject><subject>Seismology</subject><subject>Spatial distribution</subject><subject>synthetic catalogue</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1L7DAUhoNcwUHd-QMC4s5e851m6cidqgwKorgzpOmJU-20Y9JynX9vh5HBlWdzNs_zcs6L0Aklfylh5oIRym6nhBgu9B6aMCpVxhhhf9CEUJFnhDF9gI5TeiPjCKkEoRP0Mhta39dd6xqcFm4FuAu4XwAGF_vFx-DeAYcIHwO0fp0t3Wtb90MFuKpTH-ty2KjYtRX23XLVQA8tpIR33BHaD65JcPy9D9HT7N_j1XU2vy9uri7nmZNC8swpw4Aoo7SB0udQlqLKSx5yr7gXMpTGU0MDEd5BXjLuwUDwWlXaVJIozw_R6TZ3Fbvx1tTbt26I41PJUsI51cRoMVLnW8rHLqUIwa5ivXRxPUJ2U6L9WeKIn32HuuRdE6JrfZ12DlNccUk2HN9y_-sG1r9m2tviYUo1k3y0sq01NgmfO8vFd6s019I-3xV2_vwoeDGd2YJ_AaMfkGo</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Mignan, A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201208</creationdate><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><author>Mignan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>completeness magnitude</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>FMD</topic><topic>Geophysics</topic><topic>Plate tectonics</topic><topic>Scientific apparatus & instruments</topic><topic>Seismic activity</topic><topic>seismic network</topic><topic>Seismology</topic><topic>Spatial distribution</topic><topic>synthetic catalogue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignan, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>117</volume><issue>B8</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume.
Key Points
The FMD shape is a function of Mc heterogeneities
The elemental FMD (Mc constant) has an angular shape
The FMD model based on the cumulative normal distribution overestimates Mc</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009347</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a |
issn | 0148-0227 2169-9313 2156-2202 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_1033170974 |
source | Wiley Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | completeness magnitude Earth sciences Earth, ocean, space Earthquakes Exact sciences and technology FMD Geophysics Plate tectonics Scientific apparatus & instruments Seismic activity seismic network Seismology Spatial distribution synthetic catalogue |
title | Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20shape%20of%20the%20earthquake%20frequency-magnitude%20distribution%20and%20completeness%20magnitude&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Mignan,%20A.&rft.date=2012-08&rft.volume=117&rft.issue=B8&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JB009347&rft_dat=%3Cproquest_cross%3E2734349461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033170974&rft_id=info:pmid/&rfr_iscdi=true |