Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude

We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Solid Earth 2012-08, Vol.117 (B8), p.n/a
1. Verfasser: Mignan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B8
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 117
creator Mignan, A.
description We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m < Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume. Key Points The FMD shape is a function of Mc heterogeneities The elemental FMD (Mc constant) has an angular shape The FMD model based on the cumulative normal distribution overestimates Mc
doi_str_mv 10.1029/2012JB009347
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1033170974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734349461</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</originalsourceid><addsrcrecordid>eNp9kE1L7DAUhoNcwUHd-QMC4s5e851m6cidqgwKorgzpOmJU-20Y9JynX9vh5HBlWdzNs_zcs6L0Aklfylh5oIRym6nhBgu9B6aMCpVxhhhf9CEUJFnhDF9gI5TeiPjCKkEoRP0Mhta39dd6xqcFm4FuAu4XwAGF_vFx-DeAYcIHwO0fp0t3Wtb90MFuKpTH-ty2KjYtRX23XLVQA8tpIR33BHaD65JcPy9D9HT7N_j1XU2vy9uri7nmZNC8swpw4Aoo7SB0udQlqLKSx5yr7gXMpTGU0MDEd5BXjLuwUDwWlXaVJIozw_R6TZ3Fbvx1tTbt26I41PJUsI51cRoMVLnW8rHLqUIwa5ivXRxPUJ2U6L9WeKIn32HuuRdE6JrfZ12DlNccUk2HN9y_-sG1r9m2tviYUo1k3y0sq01NgmfO8vFd6s019I-3xV2_vwoeDGd2YJ_AaMfkGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033170974</pqid></control><display><type>article</type><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><source>Wiley Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Mignan, A.</creator><creatorcontrib>Mignan, A.</creatorcontrib><description>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m &lt; Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume. Key Points The FMD shape is a function of Mc heterogeneities The elemental FMD (Mc constant) has an angular shape The FMD model based on the cumulative normal distribution overestimates Mc</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009347</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>completeness magnitude ; Earth sciences ; Earth, ocean, space ; Earthquakes ; Exact sciences and technology ; FMD ; Geophysics ; Plate tectonics ; Scientific apparatus &amp; instruments ; Seismic activity ; seismic network ; Seismology ; Spatial distribution ; synthetic catalogue</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</citedby><cites>FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JB009347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JB009347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26363507$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mignan, A.</creatorcontrib><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m &lt; Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume. Key Points The FMD shape is a function of Mc heterogeneities The elemental FMD (Mc constant) has an angular shape The FMD model based on the cumulative normal distribution overestimates Mc</description><subject>completeness magnitude</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>FMD</subject><subject>Geophysics</subject><subject>Plate tectonics</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Seismic activity</subject><subject>seismic network</subject><subject>Seismology</subject><subject>Spatial distribution</subject><subject>synthetic catalogue</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1L7DAUhoNcwUHd-QMC4s5e851m6cidqgwKorgzpOmJU-20Y9JynX9vh5HBlWdzNs_zcs6L0Aklfylh5oIRym6nhBgu9B6aMCpVxhhhf9CEUJFnhDF9gI5TeiPjCKkEoRP0Mhta39dd6xqcFm4FuAu4XwAGF_vFx-DeAYcIHwO0fp0t3Wtb90MFuKpTH-ty2KjYtRX23XLVQA8tpIR33BHaD65JcPy9D9HT7N_j1XU2vy9uri7nmZNC8swpw4Aoo7SB0udQlqLKSx5yr7gXMpTGU0MDEd5BXjLuwUDwWlXaVJIozw_R6TZ3Fbvx1tTbt26I41PJUsI51cRoMVLnW8rHLqUIwa5ivXRxPUJ2U6L9WeKIn32HuuRdE6JrfZ12DlNccUk2HN9y_-sG1r9m2tviYUo1k3y0sq01NgmfO8vFd6s019I-3xV2_vwoeDGd2YJ_AaMfkGo</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Mignan, A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201208</creationdate><title>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</title><author>Mignan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5453-a692e069679ebc8ebb4d8b3f8c63c45fb9c191f04cae8b23ce9efc76d79d506c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>completeness magnitude</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>FMD</topic><topic>Geophysics</topic><topic>Plate tectonics</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Seismic activity</topic><topic>seismic network</topic><topic>Seismology</topic><topic>Spatial distribution</topic><topic>synthetic catalogue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignan, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-08</date><risdate>2012</risdate><volume>117</volume><issue>B8</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>We investigated the functional shape of the earthquake frequency‐magnitude distribution (FMD) to identify its dependence on the completeness magnitude Mc. The FMD takes the form N(m) ∝ exp(−βm)q(m) where N(m) is the event number, m the magnitude, exp(−βm) the Gutenberg‐Richter law and q(m) a detection function. q(m) is commonly defined as the cumulative Normal distribution to describe the gradual curvature of bulk FMDs. Recent results however suggest that this gradual curvature is due to Mc heterogeneities, meaning that the functional shape of the elemental FMD has yet to be described. We propose a detection function of the form q(m) = exp(κ(m − Mc)) for m &lt; Mc and q(m) = 1 for m ≥ Mc, which leads to an FMD of angular shape. The two FMD models are compared in earthquake catalogs from Southern California and Nevada and in synthetic catalogs. We show that the angular FMD model better describes the elemental FMD and that the sum of elemental angular FMDs leads to the gradually curved bulk FMD. We propose an FMD shape ontology consisting of 5 categories depending on the Mc spatial distribution, from Mc constant to Mc highly heterogeneous: (I) Angular FMD, (II) Intermediary FMD, (III) Intermediary FMD with multiple maxima, (IV) Gradually curved FMD and (V) Gradually curved FMD with multiple maxima. We also demonstrate that the gradually curved FMD model overestimates Mc. This study provides new insights into earthquake detectability properties by using seismicity as a proxy and the means to accurately estimate Mc in any given volume. Key Points The FMD shape is a function of Mc heterogeneities The elemental FMD (Mc constant) has an angular shape The FMD model based on the cumulative normal distribution overestimates Mc</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009347</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2012-08, Vol.117 (B8), p.n/a
issn 0148-0227
2169-9313
2156-2202
2169-9356
language eng
recordid cdi_proquest_journals_1033170974
source Wiley Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects completeness magnitude
Earth sciences
Earth, ocean, space
Earthquakes
Exact sciences and technology
FMD
Geophysics
Plate tectonics
Scientific apparatus & instruments
Seismic activity
seismic network
Seismology
Spatial distribution
synthetic catalogue
title Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20shape%20of%20the%20earthquake%20frequency-magnitude%20distribution%20and%20completeness%20magnitude&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Mignan,%20A.&rft.date=2012-08&rft.volume=117&rft.issue=B8&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JB009347&rft_dat=%3Cproquest_cross%3E2734349461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033170974&rft_id=info:pmid/&rfr_iscdi=true