Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study
In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic ac...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2012-08, Vol.12 (4), p.656-664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 664 |
---|---|
container_issue | 4 |
container_start_page | 656 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 12 |
creator | Trohalaki, S. Pachter, R. Luckarift, H. R. Johnson, G. R. |
description | In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET. |
doi_str_mv | 10.1002/fuce.201200043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1032900409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732537591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</originalsourceid><addsrcrecordid>eNqFkEtP4zAUhSPESDxmtqwtsU7xKy92qK8BtZ1FQSwt17kBgxMX24EJ_4R_i1FRNbtZ3df5zpVOkpwRPCIY04umVzCimFCMMWcHyTHJSZbmZcYP9z3Pj5IT758wJkVZ8uPk47pt7UYb_S6Dth2yDQqPgBZSKenBo8bZFt062UKI0ys4r5U11iHZ1WgdHGyDbQcVb8qC-b5Fn7XuHgykb9IYNJZuE1cr2dnQbwBNDajgbA3-El2hpY1jb6RDk6GTrVY--vb18DP50Ujj4dd3PU3uZtPb8e908Wd-Pb5apIpTwlJJcc2aLKtIVaqK8oLIEjNVcCJxplhOoAaGqaIUM1JVKucFJYQUEDsas2KnyfnOd-vsSw8-iCfbuy6-FAQzWsUwcRVVo51KOeu9g0ZsnW6lG6JIfMUvvuIX-_gjUO2AN21g-I9azO7G03_ZdMdqH-DvnpXuWeQFKzJxv5qL2WSZT0q-FjfsE5nKmUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1032900409</pqid></control><display><type>article</type><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><source>Access via Wiley Online Library</source><creator>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</creator><creatorcontrib>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</creatorcontrib><description>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201200043</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Carbon ; Laccase ; Molecular biology ; Molecular Dynamics Simulation ; Nanotubes ; Single-Wall Carbon Nanotubes</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2012-08, Vol.12 (4), p.656-664</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</citedby><cites>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201200043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201200043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Trohalaki, S.</creatorcontrib><creatorcontrib>Pachter, R.</creatorcontrib><creatorcontrib>Luckarift, H. R.</creatorcontrib><creatorcontrib>Johnson, G. R.</creatorcontrib><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</description><subject>Carbon</subject><subject>Laccase</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanotubes</subject><subject>Single-Wall Carbon Nanotubes</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP4zAUhSPESDxmtqwtsU7xKy92qK8BtZ1FQSwt17kBgxMX24EJ_4R_i1FRNbtZ3df5zpVOkpwRPCIY04umVzCimFCMMWcHyTHJSZbmZcYP9z3Pj5IT758wJkVZ8uPk47pt7UYb_S6Dth2yDQqPgBZSKenBo8bZFt062UKI0ys4r5U11iHZ1WgdHGyDbQcVb8qC-b5Fn7XuHgykb9IYNJZuE1cr2dnQbwBNDajgbA3-El2hpY1jb6RDk6GTrVY--vb18DP50Ujj4dd3PU3uZtPb8e908Wd-Pb5apIpTwlJJcc2aLKtIVaqK8oLIEjNVcCJxplhOoAaGqaIUM1JVKucFJYQUEDsas2KnyfnOd-vsSw8-iCfbuy6-FAQzWsUwcRVVo51KOeu9g0ZsnW6lG6JIfMUvvuIX-_gjUO2AN21g-I9azO7G03_ZdMdqH-DvnpXuWeQFKzJxv5qL2WSZT0q-FjfsE5nKmUE</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Trohalaki, S.</creator><creator>Pachter, R.</creator><creator>Luckarift, H. R.</creator><creator>Johnson, G. R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201208</creationdate><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><author>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon</topic><topic>Laccase</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanotubes</topic><topic>Single-Wall Carbon Nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trohalaki, S.</creatorcontrib><creatorcontrib>Pachter, R.</creatorcontrib><creatorcontrib>Luckarift, H. R.</creatorcontrib><creatorcontrib>Johnson, G. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trohalaki, S.</au><au>Pachter, R.</au><au>Luckarift, H. R.</au><au>Johnson, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2012-08</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>656</spage><epage>664</epage><pages>656-664</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201200043</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2012-08, Vol.12 (4), p.656-664 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_1032900409 |
source | Access via Wiley Online Library |
subjects | Carbon Laccase Molecular biology Molecular Dynamics Simulation Nanotubes Single-Wall Carbon Nanotubes |
title | Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20the%20Laccases%20from%20Trametes%20versicolor%20and%20Streptomyces%20coelicolor%20on%20Single-wall%20Carbon%20Nanotube%20Electrodes:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Trohalaki,%20S.&rft.date=2012-08&rft.volume=12&rft.issue=4&rft.spage=656&rft.epage=664&rft.pages=656-664&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201200043&rft_dat=%3Cproquest_cross%3E2732537591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1032900409&rft_id=info:pmid/&rfr_iscdi=true |