Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study

In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2012-08, Vol.12 (4), p.656-664
Hauptverfasser: Trohalaki, S., Pachter, R., Luckarift, H. R., Johnson, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 4
container_start_page 656
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 12
creator Trohalaki, S.
Pachter, R.
Luckarift, H. R.
Johnson, G. R.
description In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.
doi_str_mv 10.1002/fuce.201200043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1032900409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732537591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</originalsourceid><addsrcrecordid>eNqFkEtP4zAUhSPESDxmtqwtsU7xKy92qK8BtZ1FQSwt17kBgxMX24EJ_4R_i1FRNbtZ3df5zpVOkpwRPCIY04umVzCimFCMMWcHyTHJSZbmZcYP9z3Pj5IT758wJkVZ8uPk47pt7UYb_S6Dth2yDQqPgBZSKenBo8bZFt062UKI0ys4r5U11iHZ1WgdHGyDbQcVb8qC-b5Fn7XuHgykb9IYNJZuE1cr2dnQbwBNDajgbA3-El2hpY1jb6RDk6GTrVY--vb18DP50Ujj4dd3PU3uZtPb8e908Wd-Pb5apIpTwlJJcc2aLKtIVaqK8oLIEjNVcCJxplhOoAaGqaIUM1JVKucFJYQUEDsas2KnyfnOd-vsSw8-iCfbuy6-FAQzWsUwcRVVo51KOeu9g0ZsnW6lG6JIfMUvvuIX-_gjUO2AN21g-I9azO7G03_ZdMdqH-DvnpXuWeQFKzJxv5qL2WSZT0q-FjfsE5nKmUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1032900409</pqid></control><display><type>article</type><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><source>Access via Wiley Online Library</source><creator>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</creator><creatorcontrib>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</creatorcontrib><description>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201200043</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Carbon ; Laccase ; Molecular biology ; Molecular Dynamics Simulation ; Nanotubes ; Single-Wall Carbon Nanotubes</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2012-08, Vol.12 (4), p.656-664</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</citedby><cites>FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201200043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201200043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Trohalaki, S.</creatorcontrib><creatorcontrib>Pachter, R.</creatorcontrib><creatorcontrib>Luckarift, H. R.</creatorcontrib><creatorcontrib>Johnson, G. R.</creatorcontrib><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</description><subject>Carbon</subject><subject>Laccase</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanotubes</subject><subject>Single-Wall Carbon Nanotubes</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP4zAUhSPESDxmtqwtsU7xKy92qK8BtZ1FQSwt17kBgxMX24EJ_4R_i1FRNbtZ3df5zpVOkpwRPCIY04umVzCimFCMMWcHyTHJSZbmZcYP9z3Pj5IT758wJkVZ8uPk47pt7UYb_S6Dth2yDQqPgBZSKenBo8bZFt062UKI0ys4r5U11iHZ1WgdHGyDbQcVb8qC-b5Fn7XuHgykb9IYNJZuE1cr2dnQbwBNDajgbA3-El2hpY1jb6RDk6GTrVY--vb18DP50Ujj4dd3PU3uZtPb8e908Wd-Pb5apIpTwlJJcc2aLKtIVaqK8oLIEjNVcCJxplhOoAaGqaIUM1JVKucFJYQUEDsas2KnyfnOd-vsSw8-iCfbuy6-FAQzWsUwcRVVo51KOeu9g0ZsnW6lG6JIfMUvvuIX-_gjUO2AN21g-I9azO7G03_ZdMdqH-DvnpXuWeQFKzJxv5qL2WSZT0q-FjfsE5nKmUE</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Trohalaki, S.</creator><creator>Pachter, R.</creator><creator>Luckarift, H. R.</creator><creator>Johnson, G. R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201208</creationdate><title>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</title><author>Trohalaki, S. ; Pachter, R. ; Luckarift, H. R. ; Johnson, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4213-a20d3f559198c92471a803c741a05c361ede302c2203199c64721117ec6421203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon</topic><topic>Laccase</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanotubes</topic><topic>Single-Wall Carbon Nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trohalaki, S.</creatorcontrib><creatorcontrib>Pachter, R.</creatorcontrib><creatorcontrib>Luckarift, H. R.</creatorcontrib><creatorcontrib>Johnson, G. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trohalaki, S.</au><au>Pachter, R.</au><au>Luckarift, H. R.</au><au>Johnson, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2012-08</date><risdate>2012</risdate><volume>12</volume><issue>4</issue><spage>656</spage><epage>664</epage><pages>656-664</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>In this work, we investigate the immobilization of laccases from Trametes versicolor (TvL) and the small laccase (SLAC) from Streptomyces coelicolor on single‐wall carbon nanotube (SWCNT) surfaces. SLAC may potentially offer improved adsorption on the electrode, thus improving bioelectrocatalytic activity via direct electron transfer (DET). Laccase immobilization on SWCNTs is achieved non‐covalently with a molecular tether (1‐pyrene butanoic acid, succinimidyl ester) that forms an amide bond with an amine group on the laccase surface while the pyrene coordinates to the SWCNT by π–π stacking. In our approach, density functional theory calculations were first used to model the interaction energies between SWCNTs and pyrene to validate an empirical force field, thereafter applied in molecular dynamics (MD) simulations. In the simulated models, the SWCNT was placed near the region of the (type 1) Cu(T1) atom in the laccases, and in proximity to other regions where adsorption seems likely. Calculated interaction energies between the SWCNTs and laccases and distances between the SWCNT surface and the Cu(T1) atom have shown that SWCNTs adsorb more strongly to SLAC than to TvL, and that the separation between the SWCNTs and Cu(T1) atoms is smaller for SLAC than for TvL, having implications for improved DET.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201200043</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2012-08, Vol.12 (4), p.656-664
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_1032900409
source Access via Wiley Online Library
subjects Carbon
Laccase
Molecular biology
Molecular Dynamics Simulation
Nanotubes
Single-Wall Carbon Nanotubes
title Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20the%20Laccases%20from%20Trametes%20versicolor%20and%20Streptomyces%20coelicolor%20on%20Single-wall%20Carbon%20Nanotube%20Electrodes:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Trohalaki,%20S.&rft.date=2012-08&rft.volume=12&rft.issue=4&rft.spage=656&rft.epage=664&rft.pages=656-664&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201200043&rft_dat=%3Cproquest_cross%3E2732537591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1032900409&rft_id=info:pmid/&rfr_iscdi=true