SU2 Nonstandard Bases: Case of Mutually Unbiased Bases
This paper deals with bases in a finite-dimensional Hilbert space. Such a~space can be realized as a subspace of the representation space of SU2 corresponding to an irreducible representation of SU2. The representation theory of SU2 is reconsidered via the use of two truncated deformed oscillators....
Gespeichert in:
Veröffentlicht in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2007-01, Vol.3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | 3 |
creator | Albouy, Olivier R Kibler, Maurice |
description | This paper deals with bases in a finite-dimensional Hilbert space. Such a~space can be realized as a subspace of the representation space of SU2 corresponding to an irreducible representation of SU2. The representation theory of SU2 is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j2, jz} by a scheme {j2, vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su2. The eigenvectors of the commuting set of operators {j2, vra} are adapted to a tower of chains SO3 É C2j+1 (2j Î N*), where C2j+1 is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices. |
doi_str_mv | 10.3842/SIGMA.2007.076 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1030406638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725686491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p153t-b340f2d76f8e6b60f8e371666312266b2c4a7e35d7cc79d9eec811b1d7e222f63</originalsourceid><addsrcrecordid>eNotjUFLwzAYhoMgbM5dPQc8t35fkn5Jvc2ic7DpYfY8kiYBR2ln0x789xbc6YGHl-dl7AEhl0aJp-Nue9jkAkDnoOmGLdFgkQEV5YLdpXQGUKQIloyOteAffZdG23k7eP5iU0jPvJrB-8gP0zjZtv3ldee-Z3cd3LPbaNsU1leuWP32-lW9Z_vP7a7a7LMLFnLMnFQQhdcUTSBHMENqJCKJQhA50Sirgyy8bhpd-jKExiA69DoIISLJFXv8716G_mcKaTyd-2no5ssTggQFc8rIP6FfRBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030406638</pqid></control><display><type>article</type><title>SU2 Nonstandard Bases: Case of Mutually Unbiased Bases</title><source>Math-Net.Ru (free access)</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Albouy, Olivier ; R Kibler, Maurice</creator><creatorcontrib>Albouy, Olivier ; R Kibler, Maurice</creatorcontrib><description>This paper deals with bases in a finite-dimensional Hilbert space. Such a~space can be realized as a subspace of the representation space of SU2 corresponding to an irreducible representation of SU2. The representation theory of SU2 is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j2, jz} by a scheme {j2, vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su2. The eigenvectors of the commuting set of operators {j2, vra} are adapted to a tower of chains SO3 É C2j+1 (2j Î N*), where C2j+1 is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.</description><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2007.076</identifier><language>eng</language><publisher>Kiev: National Academy of Sciences of Ukraine</publisher><ispartof>Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3</ispartof><rights>Copyright National Academy of Sciences of Ukraine 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Albouy, Olivier</creatorcontrib><creatorcontrib>R Kibler, Maurice</creatorcontrib><title>SU2 Nonstandard Bases: Case of Mutually Unbiased Bases</title><title>Symmetry, integrability and geometry, methods and applications</title><description>This paper deals with bases in a finite-dimensional Hilbert space. Such a~space can be realized as a subspace of the representation space of SU2 corresponding to an irreducible representation of SU2. The representation theory of SU2 is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j2, jz} by a scheme {j2, vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su2. The eigenvectors of the commuting set of operators {j2, vra} are adapted to a tower of chains SO3 É C2j+1 (2j Î N*), where C2j+1 is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.</description><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjUFLwzAYhoMgbM5dPQc8t35fkn5Jvc2ic7DpYfY8kiYBR2ln0x789xbc6YGHl-dl7AEhl0aJp-Nue9jkAkDnoOmGLdFgkQEV5YLdpXQGUKQIloyOteAffZdG23k7eP5iU0jPvJrB-8gP0zjZtv3ldee-Z3cd3LPbaNsU1leuWP32-lW9Z_vP7a7a7LMLFnLMnFQQhdcUTSBHMENqJCKJQhA50Sirgyy8bhpd-jKExiA69DoIISLJFXv8716G_mcKaTyd-2no5ssTggQFc8rIP6FfRBo</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Albouy, Olivier</creator><creator>R Kibler, Maurice</creator><general>National Academy of Sciences of Ukraine</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>SU2 Nonstandard Bases: Case of Mutually Unbiased Bases</title><author>Albouy, Olivier ; R Kibler, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p153t-b340f2d76f8e6b60f8e371666312266b2c4a7e35d7cc79d9eec811b1d7e222f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albouy, Olivier</creatorcontrib><creatorcontrib>R Kibler, Maurice</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albouy, Olivier</au><au>R Kibler, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SU2 Nonstandard Bases: Case of Mutually Unbiased Bases</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>3</volume><eissn>1815-0659</eissn><abstract>This paper deals with bases in a finite-dimensional Hilbert space. Such a~space can be realized as a subspace of the representation space of SU2 corresponding to an irreducible representation of SU2. The representation theory of SU2 is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme {j2, jz} by a scheme {j2, vra}, where the two-parameter operator vra is defined in the universal enveloping algebra of the Lie algebra su2. The eigenvectors of the commuting set of operators {j2, vra} are adapted to a tower of chains SO3 É C2j+1 (2j Î N*), where C2j+1 is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.</abstract><cop>Kiev</cop><pub>National Academy of Sciences of Ukraine</pub><doi>10.3842/SIGMA.2007.076</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2007-01, Vol.3 |
issn | 1815-0659 |
language | eng |
recordid | cdi_proquest_journals_1030406638 |
source | Math-Net.Ru (free access); DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | SU2 Nonstandard Bases: Case of Mutually Unbiased Bases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SU2%20Nonstandard%20Bases:%20Case%20of%20Mutually%20Unbiased%20Bases&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Albouy,%20Olivier&rft.date=2007-01-01&rft.volume=3&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2007.076&rft_dat=%3Cproquest%3E2725686491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030406638&rft_id=info:pmid/&rfr_iscdi=true |