Decoupled Active Contour (DAC) for Boundary Detection

The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2011-02, Vol.33 (2), p.310-324
Hauptverfasser: Mishra, Akshaya Kumar, Fieguth, Paul W, Clausi, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 2
container_start_page 310
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 33
creator Mishra, Akshaya Kumar
Fieguth, Paul W
Clausi, David A
description The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.
doi_str_mv 10.1109/TPAMI.2010.83
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030180352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439007</ieee_id><sourcerecordid>2724355191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</originalsourceid><addsrcrecordid>eNqF0M9r2zAUB3AxNtq063GnQjGM0e3g7klPsqVjlqw_oKU75G5k-QlcHCuz7ML--ylN2kIvPQmhj96PL2NfOFxwDubn6s_87uZCQLpr_MBm3KDJUaH5yGbAC5FrLfQhO4rxAYBLBXjADgVPTIOZMbUkF6ZNR002d2P7SNki9GOYhuz7cr74kfkwZL_C1Dd2-JctaaSEQv-ZffK2i3SyP4_Z6vL3anGd395f3Szmt7lTUI65l8bZGrxtylop8CCErqXhRLYshEDbaK99mko6JQvpCFE7WYNMH0h5PGbnu7KbIfydKI7Vuo2Ous72FKZYaaVKzmVZvi9TtwK11kl-fSMf0rZ92qLigMA1oBJJ5TvlhhDjQL7aDO06ZZBQtc29esq92uZeaUz-bF91qtfUvOjnoBP4tgc2Otv5wfauja8OywIN3zY-3bmWiF6elUQDUOJ_oVuQOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030180352</pqid></control><display><type>article</type><title>Decoupled Active Contour (DAC) for Boundary Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</creator><creatorcontrib>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</creatorcontrib><description>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2010.83</identifier><identifier>PMID: 21193809</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>active contour ; Active contours ; Algorithms ; Applied sciences ; Artificial intelligence ; Boundaries ; Computer science; control theory; systems ; Computer vision ; Convergence ; Curvature ; Data processing. List processing. Character string processing ; deformable model ; Energy measurement ; Exact sciences and technology ; Hidden Markov models ; Image converters ; importance sampling ; Iterative algorithms ; Mathematical models ; Measurement uncertainty ; Memory organisation. Data processing ; Noise ; Object detection ; Pattern recognition. Digital image processing. Computational geometry ; Searching ; Segmentation ; Shape ; Snake ; Software ; statistical data fusion ; Studies ; Viterbi algorithm</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2011-02, Vol.33 (2), p.310-324</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</citedby><cites>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5439007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23763912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21193809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Akshaya Kumar</creatorcontrib><creatorcontrib>Fieguth, Paul W</creatorcontrib><creatorcontrib>Clausi, David A</creatorcontrib><title>Decoupled Active Contour (DAC) for Boundary Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</description><subject>active contour</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Convergence</subject><subject>Curvature</subject><subject>Data processing. List processing. Character string processing</subject><subject>deformable model</subject><subject>Energy measurement</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Image converters</subject><subject>importance sampling</subject><subject>Iterative algorithms</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Memory organisation. Data processing</subject><subject>Noise</subject><subject>Object detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Searching</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Snake</subject><subject>Software</subject><subject>statistical data fusion</subject><subject>Studies</subject><subject>Viterbi algorithm</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0M9r2zAUB3AxNtq063GnQjGM0e3g7klPsqVjlqw_oKU75G5k-QlcHCuz7ML--ylN2kIvPQmhj96PL2NfOFxwDubn6s_87uZCQLpr_MBm3KDJUaH5yGbAC5FrLfQhO4rxAYBLBXjADgVPTIOZMbUkF6ZNR002d2P7SNki9GOYhuz7cr74kfkwZL_C1Dd2-JctaaSEQv-ZffK2i3SyP4_Z6vL3anGd395f3Szmt7lTUI65l8bZGrxtylop8CCErqXhRLYshEDbaK99mko6JQvpCFE7WYNMH0h5PGbnu7KbIfydKI7Vuo2Ous72FKZYaaVKzmVZvi9TtwK11kl-fSMf0rZ92qLigMA1oBJJ5TvlhhDjQL7aDO06ZZBQtc29esq92uZeaUz-bF91qtfUvOjnoBP4tgc2Otv5wfauja8OywIN3zY-3bmWiF6elUQDUOJ_oVuQOA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Mishra, Akshaya Kumar</creator><creator>Fieguth, Paul W</creator><creator>Clausi, David A</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110201</creationdate><title>Decoupled Active Contour (DAC) for Boundary Detection</title><author>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>active contour</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Convergence</topic><topic>Curvature</topic><topic>Data processing. List processing. Character string processing</topic><topic>deformable model</topic><topic>Energy measurement</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Image converters</topic><topic>importance sampling</topic><topic>Iterative algorithms</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Memory organisation. Data processing</topic><topic>Noise</topic><topic>Object detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Searching</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Snake</topic><topic>Software</topic><topic>statistical data fusion</topic><topic>Studies</topic><topic>Viterbi algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Akshaya Kumar</creatorcontrib><creatorcontrib>Fieguth, Paul W</creatorcontrib><creatorcontrib>Clausi, David A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, Akshaya Kumar</au><au>Fieguth, Paul W</au><au>Clausi, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupled Active Contour (DAC) for Boundary Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>33</volume><issue>2</issue><spage>310</spage><epage>324</epage><pages>310-324</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>21193809</pmid><doi>10.1109/TPAMI.2010.83</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2011-02, Vol.33 (2), p.310-324
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_journals_1030180352
source IEEE Electronic Library (IEL)
subjects active contour
Active contours
Algorithms
Applied sciences
Artificial intelligence
Boundaries
Computer science
control theory
systems
Computer vision
Convergence
Curvature
Data processing. List processing. Character string processing
deformable model
Energy measurement
Exact sciences and technology
Hidden Markov models
Image converters
importance sampling
Iterative algorithms
Mathematical models
Measurement uncertainty
Memory organisation. Data processing
Noise
Object detection
Pattern recognition. Digital image processing. Computational geometry
Searching
Segmentation
Shape
Snake
Software
statistical data fusion
Studies
Viterbi algorithm
title Decoupled Active Contour (DAC) for Boundary Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupled%20Active%20Contour%20(DAC)%20for%20Boundary%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Mishra,%20Akshaya%20Kumar&rft.date=2011-02-01&rft.volume=33&rft.issue=2&rft.spage=310&rft.epage=324&rft.pages=310-324&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2010.83&rft_dat=%3Cproquest_RIE%3E2724355191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030180352&rft_id=info:pmid/21193809&rft_ieee_id=5439007&rfr_iscdi=true