Decoupled Active Contour (DAC) for Boundary Detection
The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2011-02, Vol.33 (2), p.310-324 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 2 |
container_start_page | 310 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 33 |
creator | Mishra, Akshaya Kumar Fieguth, Paul W Clausi, David A |
description | The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy. |
doi_str_mv | 10.1109/TPAMI.2010.83 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030180352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439007</ieee_id><sourcerecordid>2724355191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</originalsourceid><addsrcrecordid>eNqF0M9r2zAUB3AxNtq063GnQjGM0e3g7klPsqVjlqw_oKU75G5k-QlcHCuz7ML--ylN2kIvPQmhj96PL2NfOFxwDubn6s_87uZCQLpr_MBm3KDJUaH5yGbAC5FrLfQhO4rxAYBLBXjADgVPTIOZMbUkF6ZNR002d2P7SNki9GOYhuz7cr74kfkwZL_C1Dd2-JctaaSEQv-ZffK2i3SyP4_Z6vL3anGd395f3Szmt7lTUI65l8bZGrxtylop8CCErqXhRLYshEDbaK99mko6JQvpCFE7WYNMH0h5PGbnu7KbIfydKI7Vuo2Ous72FKZYaaVKzmVZvi9TtwK11kl-fSMf0rZ92qLigMA1oBJJ5TvlhhDjQL7aDO06ZZBQtc29esq92uZeaUz-bF91qtfUvOjnoBP4tgc2Otv5wfauja8OywIN3zY-3bmWiF6elUQDUOJ_oVuQOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030180352</pqid></control><display><type>article</type><title>Decoupled Active Contour (DAC) for Boundary Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</creator><creatorcontrib>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</creatorcontrib><description>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2010.83</identifier><identifier>PMID: 21193809</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>active contour ; Active contours ; Algorithms ; Applied sciences ; Artificial intelligence ; Boundaries ; Computer science; control theory; systems ; Computer vision ; Convergence ; Curvature ; Data processing. List processing. Character string processing ; deformable model ; Energy measurement ; Exact sciences and technology ; Hidden Markov models ; Image converters ; importance sampling ; Iterative algorithms ; Mathematical models ; Measurement uncertainty ; Memory organisation. Data processing ; Noise ; Object detection ; Pattern recognition. Digital image processing. Computational geometry ; Searching ; Segmentation ; Shape ; Snake ; Software ; statistical data fusion ; Studies ; Viterbi algorithm</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2011-02, Vol.33 (2), p.310-324</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</citedby><cites>FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5439007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23763912$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21193809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Akshaya Kumar</creatorcontrib><creatorcontrib>Fieguth, Paul W</creatorcontrib><creatorcontrib>Clausi, David A</creatorcontrib><title>Decoupled Active Contour (DAC) for Boundary Detection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</description><subject>active contour</subject><subject>Active contours</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Convergence</subject><subject>Curvature</subject><subject>Data processing. List processing. Character string processing</subject><subject>deformable model</subject><subject>Energy measurement</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Image converters</subject><subject>importance sampling</subject><subject>Iterative algorithms</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Memory organisation. Data processing</subject><subject>Noise</subject><subject>Object detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Searching</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Snake</subject><subject>Software</subject><subject>statistical data fusion</subject><subject>Studies</subject><subject>Viterbi algorithm</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0M9r2zAUB3AxNtq063GnQjGM0e3g7klPsqVjlqw_oKU75G5k-QlcHCuz7ML--ylN2kIvPQmhj96PL2NfOFxwDubn6s_87uZCQLpr_MBm3KDJUaH5yGbAC5FrLfQhO4rxAYBLBXjADgVPTIOZMbUkF6ZNR002d2P7SNki9GOYhuz7cr74kfkwZL_C1Dd2-JctaaSEQv-ZffK2i3SyP4_Z6vL3anGd395f3Szmt7lTUI65l8bZGrxtylop8CCErqXhRLYshEDbaK99mko6JQvpCFE7WYNMH0h5PGbnu7KbIfydKI7Vuo2Ous72FKZYaaVKzmVZvi9TtwK11kl-fSMf0rZ92qLigMA1oBJJ5TvlhhDjQL7aDO06ZZBQtc29esq92uZeaUz-bF91qtfUvOjnoBP4tgc2Otv5wfauja8OywIN3zY-3bmWiF6elUQDUOJ_oVuQOA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Mishra, Akshaya Kumar</creator><creator>Fieguth, Paul W</creator><creator>Clausi, David A</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110201</creationdate><title>Decoupled Active Contour (DAC) for Boundary Detection</title><author>Mishra, Akshaya Kumar ; Fieguth, Paul W ; Clausi, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-f49cab0fad7b550f0228b491eea76223ad8f8f0144c5464ce338c4b04ad7e5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>active contour</topic><topic>Active contours</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Convergence</topic><topic>Curvature</topic><topic>Data processing. List processing. Character string processing</topic><topic>deformable model</topic><topic>Energy measurement</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Image converters</topic><topic>importance sampling</topic><topic>Iterative algorithms</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Memory organisation. Data processing</topic><topic>Noise</topic><topic>Object detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Searching</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Snake</topic><topic>Software</topic><topic>statistical data fusion</topic><topic>Studies</topic><topic>Viterbi algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Akshaya Kumar</creatorcontrib><creatorcontrib>Fieguth, Paul W</creatorcontrib><creatorcontrib>Clausi, David A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, Akshaya Kumar</au><au>Fieguth, Paul W</au><au>Clausi, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupled Active Contour (DAC) for Boundary Detection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>33</volume><issue>2</issue><spage>310</spage><epage>324</epage><pages>310-324</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>21193809</pmid><doi>10.1109/TPAMI.2010.83</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2011-02, Vol.33 (2), p.310-324 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_journals_1030180352 |
source | IEEE Electronic Library (IEL) |
subjects | active contour Active contours Algorithms Applied sciences Artificial intelligence Boundaries Computer science control theory systems Computer vision Convergence Curvature Data processing. List processing. Character string processing deformable model Energy measurement Exact sciences and technology Hidden Markov models Image converters importance sampling Iterative algorithms Mathematical models Measurement uncertainty Memory organisation. Data processing Noise Object detection Pattern recognition. Digital image processing. Computational geometry Searching Segmentation Shape Snake Software statistical data fusion Studies Viterbi algorithm |
title | Decoupled Active Contour (DAC) for Boundary Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupled%20Active%20Contour%20(DAC)%20for%20Boundary%20Detection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Mishra,%20Akshaya%20Kumar&rft.date=2011-02-01&rft.volume=33&rft.issue=2&rft.spage=310&rft.epage=324&rft.pages=310-324&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2010.83&rft_dat=%3Cproquest_RIE%3E2724355191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030180352&rft_id=info:pmid/21193809&rft_ieee_id=5439007&rfr_iscdi=true |