Ranking Learning Objects through Integration of Different Quality Indicators

The solutions used to-date for recommending learning objects have proved unsatisfactory. In an attempt to improve the situation, this document highlights the insufficiencies of the existing approaches, and identifies quality indicators that might be used to provide information on which materials to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on learning technologies 2010-10, Vol.3 (4), p.358-363
Hauptverfasser: Sanz-Rodríguez, Javier, Dodero, Juan Manuel, Sánchez-Alonso, Salvador
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 4
container_start_page 358
container_title IEEE transactions on learning technologies
container_volume 3
creator Sanz-Rodríguez, Javier
Dodero, Juan Manuel
Sánchez-Alonso, Salvador
description The solutions used to-date for recommending learning objects have proved unsatisfactory. In an attempt to improve the situation, this document highlights the insufficiencies of the existing approaches, and identifies quality indicators that might be used to provide information on which materials to recommend to users. Next, a synthesized quality indicator that can facilitate the ranking of learning objects, according to their overall quality, is proposed. In this way, explicit evaluations carried out by users or experts will be used, along with the usage data; thus, completing the information on which the recommendation is based. Taking a set of learning objects from the Merlot repository, we analyzed the relationships that exist between the different quality indicators to form an overall quality indicator that can be calculated automatically, guaranteeing that all resources will be rated.
doi_str_mv 10.1109/TLT.2010.23
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1030178598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5558894</ieee_id><sourcerecordid>2724341421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1a5a46dc455b570d2267b7b99e074f143127fe96755a9f2e033f356332645ea33</originalsourceid><addsrcrecordid>eNpNkM1LwzAYxoMoOKcnj14KHqUzH03THGV-DQpDqeeQdm-2zJnMJD3sv7dlIp7e54UfzwM_hK4JnhGC5X1TNzOKh4-yEzQhksmcsIqe_svn6CLGLcYlFZJOUP2u3ad166wGHdwYlu0WuhSztAm-X2-yhUuwDjpZ7zJvskdrDARwKXvr9c6mwwCsbKeTD_ESnRm9i3D1e6fo4_mpmb_m9fJlMX-o845WJOVEc12Uq67gvOUCrygtRStaKQGLwpCCESoMyFJwrqWhgBkzjJeM0bLgoBmbottj7z747x5iUlvfBzdMKoIZJqLishqouyPVBR9jAKP2wX7pcBggNepSgy416lJ07Lw50hYA_kjOeVXJgv0AsPxklw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030178598</pqid></control><display><type>article</type><title>Ranking Learning Objects through Integration of Different Quality Indicators</title><source>IEEE Electronic Library (IEL)</source><creator>Sanz-Rodríguez, Javier ; Dodero, Juan Manuel ; Sánchez-Alonso, Salvador</creator><creatorcontrib>Sanz-Rodríguez, Javier ; Dodero, Juan Manuel ; Sánchez-Alonso, Salvador</creatorcontrib><description>The solutions used to-date for recommending learning objects have proved unsatisfactory. In an attempt to improve the situation, this document highlights the insufficiencies of the existing approaches, and identifies quality indicators that might be used to provide information on which materials to recommend to users. Next, a synthesized quality indicator that can facilitate the ranking of learning objects, according to their overall quality, is proposed. In this way, explicit evaluations carried out by users or experts will be used, along with the usage data; thus, completing the information on which the recommendation is based. Taking a set of learning objects from the Merlot repository, we analyzed the relationships that exist between the different quality indicators to form an overall quality indicator that can be calculated automatically, guaranteeing that all resources will be rated.</description><identifier>ISSN: 1939-1382</identifier><identifier>EISSN: 1939-1382</identifier><identifier>EISSN: 2372-0050</identifier><identifier>DOI: 10.1109/TLT.2010.23</identifier><identifier>CODEN: ITLTAT</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation ; Merlot ; Object oriented methods ; Object recognition ; quality ; ranking ; Search problems</subject><ispartof>IEEE transactions on learning technologies, 2010-10, Vol.3 (4), p.358-363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct/Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1a5a46dc455b570d2267b7b99e074f143127fe96755a9f2e033f356332645ea33</citedby><cites>FETCH-LOGICAL-c281t-1a5a46dc455b570d2267b7b99e074f143127fe96755a9f2e033f356332645ea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5558894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Sanz-Rodríguez, Javier</creatorcontrib><creatorcontrib>Dodero, Juan Manuel</creatorcontrib><creatorcontrib>Sánchez-Alonso, Salvador</creatorcontrib><title>Ranking Learning Objects through Integration of Different Quality Indicators</title><title>IEEE transactions on learning technologies</title><addtitle>TLT</addtitle><description>The solutions used to-date for recommending learning objects have proved unsatisfactory. In an attempt to improve the situation, this document highlights the insufficiencies of the existing approaches, and identifies quality indicators that might be used to provide information on which materials to recommend to users. Next, a synthesized quality indicator that can facilitate the ranking of learning objects, according to their overall quality, is proposed. In this way, explicit evaluations carried out by users or experts will be used, along with the usage data; thus, completing the information on which the recommendation is based. Taking a set of learning objects from the Merlot repository, we analyzed the relationships that exist between the different quality indicators to form an overall quality indicator that can be calculated automatically, guaranteeing that all resources will be rated.</description><subject>Correlation</subject><subject>Merlot</subject><subject>Object oriented methods</subject><subject>Object recognition</subject><subject>quality</subject><subject>ranking</subject><subject>Search problems</subject><issn>1939-1382</issn><issn>1939-1382</issn><issn>2372-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAYxoMoOKcnj14KHqUzH03THGV-DQpDqeeQdm-2zJnMJD3sv7dlIp7e54UfzwM_hK4JnhGC5X1TNzOKh4-yEzQhksmcsIqe_svn6CLGLcYlFZJOUP2u3ad166wGHdwYlu0WuhSztAm-X2-yhUuwDjpZ7zJvskdrDARwKXvr9c6mwwCsbKeTD_ESnRm9i3D1e6fo4_mpmb_m9fJlMX-o845WJOVEc12Uq67gvOUCrygtRStaKQGLwpCCESoMyFJwrqWhgBkzjJeM0bLgoBmbottj7z747x5iUlvfBzdMKoIZJqLishqouyPVBR9jAKP2wX7pcBggNepSgy416lJ07Lw50hYA_kjOeVXJgv0AsPxklw</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Sanz-Rodríguez, Javier</creator><creator>Dodero, Juan Manuel</creator><creator>Sánchez-Alonso, Salvador</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101001</creationdate><title>Ranking Learning Objects through Integration of Different Quality Indicators</title><author>Sanz-Rodríguez, Javier ; Dodero, Juan Manuel ; Sánchez-Alonso, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1a5a46dc455b570d2267b7b99e074f143127fe96755a9f2e033f356332645ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Correlation</topic><topic>Merlot</topic><topic>Object oriented methods</topic><topic>Object recognition</topic><topic>quality</topic><topic>ranking</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-Rodríguez, Javier</creatorcontrib><creatorcontrib>Dodero, Juan Manuel</creatorcontrib><creatorcontrib>Sánchez-Alonso, Salvador</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on learning technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-Rodríguez, Javier</au><au>Dodero, Juan Manuel</au><au>Sánchez-Alonso, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking Learning Objects through Integration of Different Quality Indicators</atitle><jtitle>IEEE transactions on learning technologies</jtitle><stitle>TLT</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>3</volume><issue>4</issue><spage>358</spage><epage>363</epage><pages>358-363</pages><issn>1939-1382</issn><eissn>1939-1382</eissn><eissn>2372-0050</eissn><coden>ITLTAT</coden><abstract>The solutions used to-date for recommending learning objects have proved unsatisfactory. In an attempt to improve the situation, this document highlights the insufficiencies of the existing approaches, and identifies quality indicators that might be used to provide information on which materials to recommend to users. Next, a synthesized quality indicator that can facilitate the ranking of learning objects, according to their overall quality, is proposed. In this way, explicit evaluations carried out by users or experts will be used, along with the usage data; thus, completing the information on which the recommendation is based. Taking a set of learning objects from the Merlot repository, we analyzed the relationships that exist between the different quality indicators to form an overall quality indicator that can be calculated automatically, guaranteeing that all resources will be rated.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TLT.2010.23</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1382
ispartof IEEE transactions on learning technologies, 2010-10, Vol.3 (4), p.358-363
issn 1939-1382
1939-1382
2372-0050
language eng
recordid cdi_proquest_journals_1030178598
source IEEE Electronic Library (IEL)
subjects Correlation
Merlot
Object oriented methods
Object recognition
quality
ranking
Search problems
title Ranking Learning Objects through Integration of Different Quality Indicators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T17%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20Learning%20Objects%20through%20Integration%20of%20Different%20Quality%20Indicators&rft.jtitle=IEEE%20transactions%20on%20learning%20technologies&rft.au=Sanz-Rodri%CC%81guez,%20Javier&rft.date=2010-10-01&rft.volume=3&rft.issue=4&rft.spage=358&rft.epage=363&rft.pages=358-363&rft.issn=1939-1382&rft.eissn=1939-1382&rft.coden=ITLTAT&rft_id=info:doi/10.1109/TLT.2010.23&rft_dat=%3Cproquest_ieee_%3E2724341421%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030178598&rft_id=info:pmid/&rft_ieee_id=5558894&rfr_iscdi=true