In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs
We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on mobile computing 2011-01, Vol.10 (1), p.146-155 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 146 |
container_title | IEEE transactions on mobile computing |
container_volume | 10 |
creator | Iyer, Srikanth K Manjunath, D Sundaresan, Rajesh |
description | We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph. |
doi_str_mv | 10.1109/TMC.2010.59 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030162278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439003</ieee_id><sourcerecordid>849468460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuBFFKzVk0cvAQ8eZGuy-WjirSxVC_WDUvC4bNJZu7VNapJS-u9NafHgaWbgmWF4s-ya4B4hWD1MX8tegdPE1UnWIZzLHAuBT_c9FTkpKD3PLkJYYEykUv1OFkc2f4O4df4blW613sQ6ts6i1qJJbWduhT5bD0sIAR1ZeEQD9DEo0WC99q42cxRdWrUh1jaiCTQewjwtRwho28Y5GrsteDS04L92CYYYLrOzpl4GuDrWbjZ9Gk7Ll3z8_jwqB-PcUEJjLoVsGGm4BsqNpFo3uDBFzWfcCD0DZjBjxhSkrzQmWquCz1hfES2xIFoY2s3uDmfTnz8bCLFatcHAcllbcJtQSaaYkEzgJG__yYXbeJt-qwimmIii6Muk7g_KeBeCh6Za-3ZV-11C1T7_KuVf7fOvuEr65qBbAPiTnFGFMaW_1l-AZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1030162278</pqid></control><display><type>magazinearticle</type><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><source>IEEE Electronic Library (IEL)</source><creator>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</creator><creatorcontrib>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</creatorcontrib><description>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2010.59</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Ad hoc network ; Computation ; Computer networks ; Construction ; Costs ; Delay ; Delay effects ; Distributed computing ; function computation ; Graphs ; Histograms ; Interference constraints ; Links ; Networks ; PAC computation ; percolation ; Studies ; Thermodynamics ; User-generated content ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE transactions on mobile computing, 2011-01, Vol.10 (1), p.146-155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</citedby><cites>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>778,782,794,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5439003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iyer, Srikanth K</creatorcontrib><creatorcontrib>Manjunath, D</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</description><subject>Ad hoc network</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Construction</subject><subject>Costs</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Distributed computing</subject><subject>function computation</subject><subject>Graphs</subject><subject>Histograms</subject><subject>Interference constraints</subject><subject>Links</subject><subject>Networks</subject><subject>PAC computation</subject><subject>percolation</subject><subject>Studies</subject><subject>Thermodynamics</subject><subject>User-generated content</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2011</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuBFFKzVk0cvAQ8eZGuy-WjirSxVC_WDUvC4bNJZu7VNapJS-u9NafHgaWbgmWF4s-ya4B4hWD1MX8tegdPE1UnWIZzLHAuBT_c9FTkpKD3PLkJYYEykUv1OFkc2f4O4df4blW613sQ6ts6i1qJJbWduhT5bD0sIAR1ZeEQD9DEo0WC99q42cxRdWrUh1jaiCTQewjwtRwho28Y5GrsteDS04L92CYYYLrOzpl4GuDrWbjZ9Gk7Ll3z8_jwqB-PcUEJjLoVsGGm4BsqNpFo3uDBFzWfcCD0DZjBjxhSkrzQmWquCz1hfES2xIFoY2s3uDmfTnz8bCLFatcHAcllbcJtQSaaYkEzgJG__yYXbeJt-qwimmIii6Muk7g_KeBeCh6Za-3ZV-11C1T7_KuVf7fOvuEr65qBbAPiTnFGFMaW_1l-AZA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Iyer, Srikanth K</creator><creator>Manjunath, D</creator><creator>Sundaresan, Rajesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201101</creationdate><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><author>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ad hoc network</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Construction</topic><topic>Costs</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Distributed computing</topic><topic>function computation</topic><topic>Graphs</topic><topic>Histograms</topic><topic>Interference constraints</topic><topic>Links</topic><topic>Networks</topic><topic>PAC computation</topic><topic>percolation</topic><topic>Studies</topic><topic>Thermodynamics</topic><topic>User-generated content</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Srikanth K</creatorcontrib><creatorcontrib>Manjunath, D</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyer, Srikanth K</au><au>Manjunath, D</au><au>Sundaresan, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2011-01</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>146</spage><epage>155</epage><pages>146-155</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2010.59</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2011-01, Vol.10 (1), p.146-155 |
issn | 1536-1233 1558-0660 |
language | eng |
recordid | cdi_proquest_journals_1030162278 |
source | IEEE Electronic Library (IEL) |
subjects | Ad hoc network Computation Computer networks Construction Costs Delay Delay effects Distributed computing function computation Graphs Histograms Interference constraints Links Networks PAC computation percolation Studies Thermodynamics User-generated content Wireless networks wireless sensor network Wireless sensor networks |
title | In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Network%20Computation%20in%20Random%20Wireless%20Networks:%20A%20PAC%20Approach%20to%20Constant%20Refresh%20Rates%20with%20Lower%20Energy%20Costs&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Iyer,%20Srikanth%20K&rft.date=2011-01&rft.volume=10&rft.issue=1&rft.spage=146&rft.epage=155&rft.pages=146-155&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2010.59&rft_dat=%3Cproquest_RIE%3E849468460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030162278&rft_id=info:pmid/&rft_ieee_id=5439003&rfr_iscdi=true |