In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs

We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2011-01, Vol.10 (1), p.146-155
Hauptverfasser: Iyer, Srikanth K, Manjunath, D, Sundaresan, Rajesh
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 146
container_title IEEE transactions on mobile computing
container_volume 10
creator Iyer, Srikanth K
Manjunath, D
Sundaresan, Rajesh
description We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.
doi_str_mv 10.1109/TMC.2010.59
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030162278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5439003</ieee_id><sourcerecordid>849468460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuBFFKzVk0cvAQ8eZGuy-WjirSxVC_WDUvC4bNJZu7VNapJS-u9NafHgaWbgmWF4s-ya4B4hWD1MX8tegdPE1UnWIZzLHAuBT_c9FTkpKD3PLkJYYEykUv1OFkc2f4O4df4blW613sQ6ts6i1qJJbWduhT5bD0sIAR1ZeEQD9DEo0WC99q42cxRdWrUh1jaiCTQewjwtRwho28Y5GrsteDS04L92CYYYLrOzpl4GuDrWbjZ9Gk7Ll3z8_jwqB-PcUEJjLoVsGGm4BsqNpFo3uDBFzWfcCD0DZjBjxhSkrzQmWquCz1hfES2xIFoY2s3uDmfTnz8bCLFatcHAcllbcJtQSaaYkEzgJG__yYXbeJt-qwimmIii6Muk7g_KeBeCh6Za-3ZV-11C1T7_KuVf7fOvuEr65qBbAPiTnFGFMaW_1l-AZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1030162278</pqid></control><display><type>magazinearticle</type><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><source>IEEE Electronic Library (IEL)</source><creator>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</creator><creatorcontrib>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</creatorcontrib><description>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2010.59</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Ad hoc network ; Computation ; Computer networks ; Construction ; Costs ; Delay ; Delay effects ; Distributed computing ; function computation ; Graphs ; Histograms ; Interference constraints ; Links ; Networks ; PAC computation ; percolation ; Studies ; Thermodynamics ; User-generated content ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE transactions on mobile computing, 2011-01, Vol.10 (1), p.146-155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</citedby><cites>FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5439003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>778,782,794,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5439003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iyer, Srikanth K</creatorcontrib><creatorcontrib>Manjunath, D</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</description><subject>Ad hoc network</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Construction</subject><subject>Costs</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Distributed computing</subject><subject>function computation</subject><subject>Graphs</subject><subject>Histograms</subject><subject>Interference constraints</subject><subject>Links</subject><subject>Networks</subject><subject>PAC computation</subject><subject>percolation</subject><subject>Studies</subject><subject>Thermodynamics</subject><subject>User-generated content</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2011</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuBFFKzVk0cvAQ8eZGuy-WjirSxVC_WDUvC4bNJZu7VNapJS-u9NafHgaWbgmWF4s-ya4B4hWD1MX8tegdPE1UnWIZzLHAuBT_c9FTkpKD3PLkJYYEykUv1OFkc2f4O4df4blW613sQ6ts6i1qJJbWduhT5bD0sIAR1ZeEQD9DEo0WC99q42cxRdWrUh1jaiCTQewjwtRwho28Y5GrsteDS04L92CYYYLrOzpl4GuDrWbjZ9Gk7Ll3z8_jwqB-PcUEJjLoVsGGm4BsqNpFo3uDBFzWfcCD0DZjBjxhSkrzQmWquCz1hfES2xIFoY2s3uDmfTnz8bCLFatcHAcllbcJtQSaaYkEzgJG__yYXbeJt-qwimmIii6Muk7g_KeBeCh6Za-3ZV-11C1T7_KuVf7fOvuEr65qBbAPiTnFGFMaW_1l-AZA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Iyer, Srikanth K</creator><creator>Manjunath, D</creator><creator>Sundaresan, Rajesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201101</creationdate><title>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</title><author>Iyer, Srikanth K ; Manjunath, D ; Sundaresan, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-868f41f5be35c83bbf02c2a5d5c6bde4c044cc2179b01bb925d4791b8061b6c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ad hoc network</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Construction</topic><topic>Costs</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Distributed computing</topic><topic>function computation</topic><topic>Graphs</topic><topic>Histograms</topic><topic>Interference constraints</topic><topic>Links</topic><topic>Networks</topic><topic>PAC computation</topic><topic>percolation</topic><topic>Studies</topic><topic>Thermodynamics</topic><topic>User-generated content</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Srikanth K</creatorcontrib><creatorcontrib>Manjunath, D</creatorcontrib><creatorcontrib>Sundaresan, Rajesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyer, Srikanth K</au><au>Manjunath, D</au><au>Sundaresan, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2011-01</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>146</spage><epage>155</epage><pages>146-155</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Θ(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Θ(√n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Θ(1) time units per sample, the delay increases to Θ(√n log n). The number of transmissions in both cases is Θ(n) per histogram sample. The achieved Θ(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Θ(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2010.59</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2011-01, Vol.10 (1), p.146-155
issn 1536-1233
1558-0660
language eng
recordid cdi_proquest_journals_1030162278
source IEEE Electronic Library (IEL)
subjects Ad hoc network
Computation
Computer networks
Construction
Costs
Delay
Delay effects
Distributed computing
function computation
Graphs
Histograms
Interference constraints
Links
Networks
PAC computation
percolation
Studies
Thermodynamics
User-generated content
Wireless networks
wireless sensor network
Wireless sensor networks
title In-Network Computation in Random Wireless Networks: A PAC Approach to Constant Refresh Rates with Lower Energy Costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Network%20Computation%20in%20Random%20Wireless%20Networks:%20A%20PAC%20Approach%20to%20Constant%20Refresh%20Rates%20with%20Lower%20Energy%20Costs&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Iyer,%20Srikanth%20K&rft.date=2011-01&rft.volume=10&rft.issue=1&rft.spage=146&rft.epage=155&rft.pages=146-155&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2010.59&rft_dat=%3Cproquest_RIE%3E849468460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030162278&rft_id=info:pmid/&rft_ieee_id=5439003&rfr_iscdi=true