Matching Visual Saliency to Confidence in Plots of Uncertain Data
Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify val...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2010-11, Vol.16 (6), p.980-989 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 6 |
container_start_page | 980 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 16 |
creator | Feng, David Kwock, Lester Yueh Lee Taylor, Russell M |
description | Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets. |
doi_str_mv | 10.1109/TVCG.2010.176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030147408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5613435</ieee_id><sourcerecordid>760209949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS3UCijlyKkSWqmHnjb42-sLEgoUKoGo1ISr5bVniaPNmq53kfjvcZo0olx6smfmp6eZ9xA6IXhCCNZns4fp9YTidankHjokmpMSCyw_5D9WqqSSygP0KaUlxoTzSu-jA4q1EoSJQ3RxZwe3CN1j8RDSaNvil20DdO6lGGIxjV0TfK6gCF3xs41DKmJTzHOjH2xuXdrBfkYfG9smON6-R2j-_Wo2vSlv769_TC9uS8elHEoGnIP3mAlrvRKuokQo4aFufF6-anztakFqJVklawqMeqdrhQHz3KiAsCN0vtF9GusVeAfd0NvWPPVhZfsXE20w_066sDCP8dkwojQVKgt82wr08fcIaTCrkBy0re0gjslUXGd7KK7-SyqJs4Oa60x-fUcu49h32QdDMMt-K_5Hr9xQro8p9dDstibYrFM06xTNOkWTU8z86dtTd_Tf2DLwZQMEANiNhSSM5-kr8Nyftg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030147408</pqid></control><display><type>article</type><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><source>IEEE Xplore</source><creator>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</creator><creatorcontrib>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</creatorcontrib><description>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2010.176</identifier><identifier>PMID: 20975135</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>brushing ; Computation ; Confidence intervals ; Correlation ; Data points ; Data visualization ; Density ; Gaussian distribution ; Mathematical models ; multivariate data ; parallel coordinates ; scatter plots ; Spectroscopy ; Uncertainty ; Uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.980-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</citedby><cites>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5613435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5613435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20975135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Kwock, Lester</creatorcontrib><creatorcontrib>Yueh Lee</creatorcontrib><creatorcontrib>Taylor, Russell M</creatorcontrib><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</description><subject>brushing</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Correlation</subject><subject>Data points</subject><subject>Data visualization</subject><subject>Density</subject><subject>Gaussian distribution</subject><subject>Mathematical models</subject><subject>multivariate data</subject><subject>parallel coordinates</subject><subject>scatter plots</subject><subject>Spectroscopy</subject><subject>Uncertainty</subject><subject>Uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1PGzEQxS3UCijlyKkSWqmHnjb42-sLEgoUKoGo1ISr5bVniaPNmq53kfjvcZo0olx6smfmp6eZ9xA6IXhCCNZns4fp9YTidankHjokmpMSCyw_5D9WqqSSygP0KaUlxoTzSu-jA4q1EoSJQ3RxZwe3CN1j8RDSaNvil20DdO6lGGIxjV0TfK6gCF3xs41DKmJTzHOjH2xuXdrBfkYfG9smON6-R2j-_Wo2vSlv769_TC9uS8elHEoGnIP3mAlrvRKuokQo4aFufF6-anztakFqJVklawqMeqdrhQHz3KiAsCN0vtF9GusVeAfd0NvWPPVhZfsXE20w_066sDCP8dkwojQVKgt82wr08fcIaTCrkBy0re0gjslUXGd7KK7-SyqJs4Oa60x-fUcu49h32QdDMMt-K_5Hr9xQro8p9dDstibYrFM06xTNOkWTU8z86dtTd_Tf2DLwZQMEANiNhSSM5-kr8Nyftg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Feng, David</creator><creator>Kwock, Lester</creator><creator>Yueh Lee</creator><creator>Taylor, Russell M</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>5PM</scope></search><sort><creationdate>20101101</creationdate><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><author>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>brushing</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Correlation</topic><topic>Data points</topic><topic>Data visualization</topic><topic>Density</topic><topic>Gaussian distribution</topic><topic>Mathematical models</topic><topic>multivariate data</topic><topic>parallel coordinates</topic><topic>scatter plots</topic><topic>Spectroscopy</topic><topic>Uncertainty</topic><topic>Uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Kwock, Lester</creatorcontrib><creatorcontrib>Yueh Lee</creatorcontrib><creatorcontrib>Taylor, Russell M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, David</au><au>Kwock, Lester</au><au>Yueh Lee</au><au>Taylor, Russell M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching Visual Saliency to Confidence in Plots of Uncertain Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>16</volume><issue>6</issue><spage>980</spage><epage>989</epage><pages>980-989</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20975135</pmid><doi>10.1109/TVCG.2010.176</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.980-989 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_journals_1030147408 |
source | IEEE Xplore |
subjects | brushing Computation Confidence intervals Correlation Data points Data visualization Density Gaussian distribution Mathematical models multivariate data parallel coordinates scatter plots Spectroscopy Uncertainty Uncertainty visualization Visualization |
title | Matching Visual Saliency to Confidence in Plots of Uncertain Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20Visual%20Saliency%20to%20Confidence%20in%20Plots%20of%20Uncertain%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Feng,%20David&rft.date=2010-11-01&rft.volume=16&rft.issue=6&rft.spage=980&rft.epage=989&rft.pages=980-989&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2010.176&rft_dat=%3Cproquest_RIE%3E760209949%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030147408&rft_id=info:pmid/20975135&rft_ieee_id=5613435&rfr_iscdi=true |