Matching Visual Saliency to Confidence in Plots of Uncertain Data

Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2010-11, Vol.16 (6), p.980-989
Hauptverfasser: Feng, David, Kwock, Lester, Yueh Lee, Taylor, Russell M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 6
container_start_page 980
container_title IEEE transactions on visualization and computer graphics
container_volume 16
creator Feng, David
Kwock, Lester
Yueh Lee
Taylor, Russell M
description Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.
doi_str_mv 10.1109/TVCG.2010.176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030147408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5613435</ieee_id><sourcerecordid>760209949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxS3UCijlyKkSWqmHnjb42-sLEgoUKoGo1ISr5bVniaPNmq53kfjvcZo0olx6smfmp6eZ9xA6IXhCCNZns4fp9YTidankHjokmpMSCyw_5D9WqqSSygP0KaUlxoTzSu-jA4q1EoSJQ3RxZwe3CN1j8RDSaNvil20DdO6lGGIxjV0TfK6gCF3xs41DKmJTzHOjH2xuXdrBfkYfG9smON6-R2j-_Wo2vSlv769_TC9uS8elHEoGnIP3mAlrvRKuokQo4aFufF6-anztakFqJVklawqMeqdrhQHz3KiAsCN0vtF9GusVeAfd0NvWPPVhZfsXE20w_066sDCP8dkwojQVKgt82wr08fcIaTCrkBy0re0gjslUXGd7KK7-SyqJs4Oa60x-fUcu49h32QdDMMt-K_5Hr9xQro8p9dDstibYrFM06xTNOkWTU8z86dtTd_Tf2DLwZQMEANiNhSSM5-kr8Nyftg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030147408</pqid></control><display><type>article</type><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><source>IEEE Xplore</source><creator>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</creator><creatorcontrib>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</creatorcontrib><description>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2010.176</identifier><identifier>PMID: 20975135</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>brushing ; Computation ; Confidence intervals ; Correlation ; Data points ; Data visualization ; Density ; Gaussian distribution ; Mathematical models ; multivariate data ; parallel coordinates ; scatter plots ; Spectroscopy ; Uncertainty ; Uncertainty visualization ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.980-989</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</citedby><cites>FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5613435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5613435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20975135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Kwock, Lester</creatorcontrib><creatorcontrib>Yueh Lee</creatorcontrib><creatorcontrib>Taylor, Russell M</creatorcontrib><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</description><subject>brushing</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Correlation</subject><subject>Data points</subject><subject>Data visualization</subject><subject>Density</subject><subject>Gaussian distribution</subject><subject>Mathematical models</subject><subject>multivariate data</subject><subject>parallel coordinates</subject><subject>scatter plots</subject><subject>Spectroscopy</subject><subject>Uncertainty</subject><subject>Uncertainty visualization</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1PGzEQxS3UCijlyKkSWqmHnjb42-sLEgoUKoGo1ISr5bVniaPNmq53kfjvcZo0olx6smfmp6eZ9xA6IXhCCNZns4fp9YTidankHjokmpMSCyw_5D9WqqSSygP0KaUlxoTzSu-jA4q1EoSJQ3RxZwe3CN1j8RDSaNvil20DdO6lGGIxjV0TfK6gCF3xs41DKmJTzHOjH2xuXdrBfkYfG9smON6-R2j-_Wo2vSlv769_TC9uS8elHEoGnIP3mAlrvRKuokQo4aFufF6-anztakFqJVklawqMeqdrhQHz3KiAsCN0vtF9GusVeAfd0NvWPPVhZfsXE20w_066sDCP8dkwojQVKgt82wr08fcIaTCrkBy0re0gjslUXGd7KK7-SyqJs4Oa60x-fUcu49h32QdDMMt-K_5Hr9xQro8p9dDstibYrFM06xTNOkWTU8z86dtTd_Tf2DLwZQMEANiNhSSM5-kr8Nyftg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Feng, David</creator><creator>Kwock, Lester</creator><creator>Yueh Lee</creator><creator>Taylor, Russell M</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><scope>5PM</scope></search><sort><creationdate>20101101</creationdate><title>Matching Visual Saliency to Confidence in Plots of Uncertain Data</title><author>Feng, David ; Kwock, Lester ; Yueh Lee ; Taylor, Russell M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3e44edd035aad75c821575debfd0108fdbcb51b76386b2e32dc9b70e043868e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>brushing</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Correlation</topic><topic>Data points</topic><topic>Data visualization</topic><topic>Density</topic><topic>Gaussian distribution</topic><topic>Mathematical models</topic><topic>multivariate data</topic><topic>parallel coordinates</topic><topic>scatter plots</topic><topic>Spectroscopy</topic><topic>Uncertainty</topic><topic>Uncertainty visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, David</creatorcontrib><creatorcontrib>Kwock, Lester</creatorcontrib><creatorcontrib>Yueh Lee</creatorcontrib><creatorcontrib>Taylor, Russell M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, David</au><au>Kwock, Lester</au><au>Yueh Lee</au><au>Taylor, Russell M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matching Visual Saliency to Confidence in Plots of Uncertain Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>16</volume><issue>6</issue><spage>980</spage><epage>989</epage><pages>980-989</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Conveying data uncertainty in visualizations is crucial for preventing viewers from drawing conclusions based on untrustworthy data points. This paper proposes a methodology for efficiently generating density plots of uncertain multivariate data sets that draws viewers to preattentively identify values of high certainty while not calling attention to uncertain values. We demonstrate how to augment scatter plots and parallel coordinates plots to incorporate statistically modeled uncertainty and show how to integrate them with existing multivariate analysis techniques, including outlier detection and interactive brushing. Computing high quality density plots can be expensive for large data sets, so we also describe a probabilistic plotting technique that summarizes the data without requiring explicit density plot computation. These techniques have been useful for identifying brain tumors in multivariate magnetic resonance spectroscopy data and we describe how to extend them to visualize ensemble data sets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20975135</pmid><doi>10.1109/TVCG.2010.176</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2010-11, Vol.16 (6), p.980-989
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_1030147408
source IEEE Xplore
subjects brushing
Computation
Confidence intervals
Correlation
Data points
Data visualization
Density
Gaussian distribution
Mathematical models
multivariate data
parallel coordinates
scatter plots
Spectroscopy
Uncertainty
Uncertainty visualization
Visualization
title Matching Visual Saliency to Confidence in Plots of Uncertain Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matching%20Visual%20Saliency%20to%20Confidence%20in%20Plots%20of%20Uncertain%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Feng,%20David&rft.date=2010-11-01&rft.volume=16&rft.issue=6&rft.spage=980&rft.epage=989&rft.pages=980-989&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2010.176&rft_dat=%3Cproquest_RIE%3E760209949%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030147408&rft_id=info:pmid/20975135&rft_ieee_id=5613435&rfr_iscdi=true