Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter

We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2010-10, Vol.7 (4), p.713-717
Hauptverfasser: Lim, Byoung-Gyun, Woo, Jae-Choon, Kim, Young-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 4
container_start_page 713
container_title IEEE geoscience and remote sensing letters
container_volume 7
creator Lim, Byoung-Gyun
Woo, Jae-Choon
Kim, Young-Soo
description We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.
doi_str_mv 10.1109/LGRS.2010.2046877
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030135964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5462847</ieee_id><sourcerecordid>2723983931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhosoOKc_QLwJeOFVZ5I2TXI5hpvCprDNr6uSpacuo21m0gr-e1MmXnh1zoHnfTk8UXRJ8IgQLG_ns-VqRHE4KU4zwflRNCCMiRgzTo77PWUxk-LtNDrzfocxTYXgg-j90TamBada8wVo1e3BxUvwtupaYxu0Br1tzGcHaGLrjWlM84FWL2P0atotWtjClAYKNANbQ-uMRgtQDZqaKjSeRyelqjxc_M5h9Dy9W0_u4_nT7GEynsc6oayNqRKlhKIUAmecFQWRLFOMAJFYY0ULlWDOU0E1SyVPONZMbEjCNC2gIDiBZBjdHHr3zoZHfZvXxmuoKtWA7XwuiBCJZJIF8vofubOda8JzeWjCoVVmaaDIgdLOeu-gzPfO1Mp9ByjvXee967x3nf-6DpmrQ8YAwB_P0oyKlCc_4jF5zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030135964</pqid></control><display><type>article</type><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</creator><creatorcontrib>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</creatorcontrib><description>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2010.2046877</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apodization ; Bandwidth ; Chirp ; Filtering ; Geometric mean filter (GMF) ; Image resolution ; Inverse ; Iterative algorithms ; Matched filters ; Mathematical analysis ; Pulse compression methods ; Sidelobes ; Signal resolution ; Spatial resolution ; spatially variant apodization (SVA) ; super-resolution ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2010-10, Vol.7 (4), p.713-717</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</citedby><cites>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5462847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5462847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Byoung-Gyun</creatorcontrib><creatorcontrib>Woo, Jae-Choon</creatorcontrib><creatorcontrib>Kim, Young-Soo</creatorcontrib><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</description><subject>Algorithms</subject><subject>Apodization</subject><subject>Bandwidth</subject><subject>Chirp</subject><subject>Filtering</subject><subject>Geometric mean filter (GMF)</subject><subject>Image resolution</subject><subject>Inverse</subject><subject>Iterative algorithms</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Pulse compression methods</subject><subject>Sidelobes</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><subject>spatially variant apodization (SVA)</subject><subject>super-resolution</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhosoOKc_QLwJeOFVZ5I2TXI5hpvCprDNr6uSpacuo21m0gr-e1MmXnh1zoHnfTk8UXRJ8IgQLG_ns-VqRHE4KU4zwflRNCCMiRgzTo77PWUxk-LtNDrzfocxTYXgg-j90TamBada8wVo1e3BxUvwtupaYxu0Br1tzGcHaGLrjWlM84FWL2P0atotWtjClAYKNANbQ-uMRgtQDZqaKjSeRyelqjxc_M5h9Dy9W0_u4_nT7GEynsc6oayNqRKlhKIUAmecFQWRLFOMAJFYY0ULlWDOU0E1SyVPONZMbEjCNC2gIDiBZBjdHHr3zoZHfZvXxmuoKtWA7XwuiBCJZJIF8vofubOda8JzeWjCoVVmaaDIgdLOeu-gzPfO1Mp9ByjvXee967x3nf-6DpmrQ8YAwB_P0oyKlCc_4jF5zA</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Lim, Byoung-Gyun</creator><creator>Woo, Jae-Choon</creator><creator>Kim, Young-Soo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201010</creationdate><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><author>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Apodization</topic><topic>Bandwidth</topic><topic>Chirp</topic><topic>Filtering</topic><topic>Geometric mean filter (GMF)</topic><topic>Image resolution</topic><topic>Inverse</topic><topic>Iterative algorithms</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Pulse compression methods</topic><topic>Sidelobes</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><topic>spatially variant apodization (SVA)</topic><topic>super-resolution</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Byoung-Gyun</creatorcontrib><creatorcontrib>Woo, Jae-Choon</creatorcontrib><creatorcontrib>Kim, Young-Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Byoung-Gyun</au><au>Woo, Jae-Choon</au><au>Kim, Young-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2010-10</date><risdate>2010</risdate><volume>7</volume><issue>4</issue><spage>713</spage><epage>717</epage><pages>713-717</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2010.2046877</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2010-10, Vol.7 (4), p.713-717
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1030135964
source IEEE Electronic Library (IEL)
subjects Algorithms
Apodization
Bandwidth
Chirp
Filtering
Geometric mean filter (GMF)
Image resolution
Inverse
Iterative algorithms
Matched filters
Mathematical analysis
Pulse compression methods
Sidelobes
Signal resolution
Spatial resolution
spatially variant apodization (SVA)
super-resolution
Synthetic aperture radar
synthetic aperture radar (SAR)
title Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noniterative%20Super-Resolution%20Technique%20Combining%20SVA%20With%20Modified%20Geometric%20Mean%20Filter&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lim,%20Byoung-Gyun&rft.date=2010-10&rft.volume=7&rft.issue=4&rft.spage=713&rft.epage=717&rft.pages=713-717&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2010.2046877&rft_dat=%3Cproquest_RIE%3E2723983931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030135964&rft_id=info:pmid/&rft_ieee_id=5462847&rfr_iscdi=true