Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter
We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2010-10, Vol.7 (4), p.713-717 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 4 |
container_start_page | 713 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 7 |
creator | Lim, Byoung-Gyun Woo, Jae-Choon Kim, Young-Soo |
description | We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering. |
doi_str_mv | 10.1109/LGRS.2010.2046877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1030135964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5462847</ieee_id><sourcerecordid>2723983931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhosoOKc_QLwJeOFVZ5I2TXI5hpvCprDNr6uSpacuo21m0gr-e1MmXnh1zoHnfTk8UXRJ8IgQLG_ns-VqRHE4KU4zwflRNCCMiRgzTo77PWUxk-LtNDrzfocxTYXgg-j90TamBada8wVo1e3BxUvwtupaYxu0Br1tzGcHaGLrjWlM84FWL2P0atotWtjClAYKNANbQ-uMRgtQDZqaKjSeRyelqjxc_M5h9Dy9W0_u4_nT7GEynsc6oayNqRKlhKIUAmecFQWRLFOMAJFYY0ULlWDOU0E1SyVPONZMbEjCNC2gIDiBZBjdHHr3zoZHfZvXxmuoKtWA7XwuiBCJZJIF8vofubOda8JzeWjCoVVmaaDIgdLOeu-gzPfO1Mp9ByjvXee967x3nf-6DpmrQ8YAwB_P0oyKlCc_4jF5zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030135964</pqid></control><display><type>article</type><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</creator><creatorcontrib>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</creatorcontrib><description>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2010.2046877</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apodization ; Bandwidth ; Chirp ; Filtering ; Geometric mean filter (GMF) ; Image resolution ; Inverse ; Iterative algorithms ; Matched filters ; Mathematical analysis ; Pulse compression methods ; Sidelobes ; Signal resolution ; Spatial resolution ; spatially variant apodization (SVA) ; super-resolution ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2010-10, Vol.7 (4), p.713-717</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</citedby><cites>FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5462847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5462847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Byoung-Gyun</creatorcontrib><creatorcontrib>Woo, Jae-Choon</creatorcontrib><creatorcontrib>Kim, Young-Soo</creatorcontrib><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</description><subject>Algorithms</subject><subject>Apodization</subject><subject>Bandwidth</subject><subject>Chirp</subject><subject>Filtering</subject><subject>Geometric mean filter (GMF)</subject><subject>Image resolution</subject><subject>Inverse</subject><subject>Iterative algorithms</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Pulse compression methods</subject><subject>Sidelobes</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><subject>spatially variant apodization (SVA)</subject><subject>super-resolution</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhosoOKc_QLwJeOFVZ5I2TXI5hpvCprDNr6uSpacuo21m0gr-e1MmXnh1zoHnfTk8UXRJ8IgQLG_ns-VqRHE4KU4zwflRNCCMiRgzTo77PWUxk-LtNDrzfocxTYXgg-j90TamBada8wVo1e3BxUvwtupaYxu0Br1tzGcHaGLrjWlM84FWL2P0atotWtjClAYKNANbQ-uMRgtQDZqaKjSeRyelqjxc_M5h9Dy9W0_u4_nT7GEynsc6oayNqRKlhKIUAmecFQWRLFOMAJFYY0ULlWDOU0E1SyVPONZMbEjCNC2gIDiBZBjdHHr3zoZHfZvXxmuoKtWA7XwuiBCJZJIF8vofubOda8JzeWjCoVVmaaDIgdLOeu-gzPfO1Mp9ByjvXee967x3nf-6DpmrQ8YAwB_P0oyKlCc_4jF5zA</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Lim, Byoung-Gyun</creator><creator>Woo, Jae-Choon</creator><creator>Kim, Young-Soo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201010</creationdate><title>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</title><author>Lim, Byoung-Gyun ; Woo, Jae-Choon ; Kim, Young-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2a8f9edf880675dd1956a51e190c0a2da3077482c5497370c58b135c2ded103e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Apodization</topic><topic>Bandwidth</topic><topic>Chirp</topic><topic>Filtering</topic><topic>Geometric mean filter (GMF)</topic><topic>Image resolution</topic><topic>Inverse</topic><topic>Iterative algorithms</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Pulse compression methods</topic><topic>Sidelobes</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><topic>spatially variant apodization (SVA)</topic><topic>super-resolution</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Byoung-Gyun</creatorcontrib><creatorcontrib>Woo, Jae-Choon</creatorcontrib><creatorcontrib>Kim, Young-Soo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Byoung-Gyun</au><au>Woo, Jae-Choon</au><au>Kim, Young-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2010-10</date><risdate>2010</risdate><volume>7</volume><issue>4</issue><spage>713</spage><epage>717</epage><pages>713-717</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>We propose a super-resolution algorithm that combines spatially variant apodization (SVA) with a modified geometric mean filter to improve the resolution of synthetic aperture radar (SAR) images and reduce sidelobes simultaneously. This method does not require iterative calculation. The efficacy of the proposed algorithm is verified by simulation with point targets and in experiments with a real SAR image. The proposed method improved resolution by 40% compared to SVA and phase-extension inverse filtering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2010.2046877</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2010-10, Vol.7 (4), p.713-717 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1030135964 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Apodization Bandwidth Chirp Filtering Geometric mean filter (GMF) Image resolution Inverse Iterative algorithms Matched filters Mathematical analysis Pulse compression methods Sidelobes Signal resolution Spatial resolution spatially variant apodization (SVA) super-resolution Synthetic aperture radar synthetic aperture radar (SAR) |
title | Noniterative Super-Resolution Technique Combining SVA With Modified Geometric Mean Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noniterative%20Super-Resolution%20Technique%20Combining%20SVA%20With%20Modified%20Geometric%20Mean%20Filter&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lim,%20Byoung-Gyun&rft.date=2010-10&rft.volume=7&rft.issue=4&rft.spage=713&rft.epage=717&rft.pages=713-717&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2010.2046877&rft_dat=%3Cproquest_RIE%3E2723983931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030135964&rft_id=info:pmid/&rft_ieee_id=5462847&rfr_iscdi=true |