Feature Analysis and Evaluation for Automatic Emotion Identification in Speech
The definition of parameters is a crucial step in the development of a system for identifying emotions in speech. Although there is no agreement on which are the best features for this task, it is generally accepted that prosody carries most of the emotional information. Most works in the field use...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2010-10, Vol.12 (6), p.490-501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 6 |
container_start_page | 490 |
container_title | IEEE transactions on multimedia |
container_volume | 12 |
creator | Luengo, I Navas, E Hernáez, Inmaculada |
description | The definition of parameters is a crucial step in the development of a system for identifying emotions in speech. Although there is no agreement on which are the best features for this task, it is generally accepted that prosody carries most of the emotional information. Most works in the field use some kind of prosodic features, often in combination with spectral and voice quality parametrizations. Nevertheless, no systematic study has been done comparing these features. This paper presents the analysis of the characteristics of features derived from prosody, spectral envelope, and voice quality as well as their capability to discriminate emotions. In addition, early fusion and late fusion techniques for combining different information sources are evaluated. The results of this analysis are validated with experimental automatic emotion identification tests. Results suggest that spectral envelope features outperform the prosodic ones. Even when different parametrizations are combined, the late fusion of long-term spectral statistics with short-term spectral envelope parameters provides an accuracy comparable to that obtained when all parametrizations are combined. |
doi_str_mv | 10.1109/TMM.2010.2051872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1029863940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5571817</ieee_id><sourcerecordid>861543075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-ca0be20916e9aaaa956b0461cf528eb9d96f5468d6f8556ff73202190bef68de3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqWwI7FEYmBKOTuxHY9V1UIlCgNljlznLFwlcYkTpP57XFoxcMvdO33vpHuE3FKYUArqcb1aTRhExYDTQrIzMqIqpymAlOdx5gxSxShckqsQtgA05yBH5HWBuh86TKatrvfBhUS3VTL_1vWge-fbxPoumQ69b6I0ybzxv9tlhW3vrDNHyLXJ-w7RfF6TC6vrgDenPiYfi_l69py-vD0tZ9OX1GQs61OjYYMMFBWodCzFxQZyQY3lrMCNqpSwPBdFJWzBubBWZgwYVdFl4xazMXk43t11_mvA0JeNCwbrWrfoh1AWgvI8A8kjef-P3Pqhi8-GkgJThchUDpGCI2U6H0KHttx1rtHdPkLlId8y5lse8i1P-UbL3dHiEPEP51zSgsrsBx19dcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029863940</pqid></control><display><type>article</type><title>Feature Analysis and Evaluation for Automatic Emotion Identification in Speech</title><source>IEEE Electronic Library (IEL)</source><creator>Luengo, I ; Navas, E ; Hernáez, Inmaculada</creator><creatorcontrib>Luengo, I ; Navas, E ; Hernáez, Inmaculada</creatorcontrib><description>The definition of parameters is a crucial step in the development of a system for identifying emotions in speech. Although there is no agreement on which are the best features for this task, it is generally accepted that prosody carries most of the emotional information. Most works in the field use some kind of prosodic features, often in combination with spectral and voice quality parametrizations. Nevertheless, no systematic study has been done comparing these features. This paper presents the analysis of the characteristics of features derived from prosody, spectral envelope, and voice quality as well as their capability to discriminate emotions. In addition, early fusion and late fusion techniques for combining different information sources are evaluated. The results of this analysis are validated with experimental automatic emotion identification tests. Results suggest that spectral envelope features outperform the prosodic ones. Even when different parametrizations are combined, the late fusion of long-term spectral statistics with short-term spectral envelope parameters provides an accuracy comparable to that obtained when all parametrizations are combined.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2010.2051872</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dispersion ; Emotion identification ; Emotions ; Envelopes ; Estimation ; Feature extraction ; information fusion ; Labeling ; Mel frequency cepstral coefficient ; Multimedia ; Parametrization ; Spectra ; Speech ; Statistics ; Voice</subject><ispartof>IEEE transactions on multimedia, 2010-10, Vol.12 (6), p.490-501</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-ca0be20916e9aaaa956b0461cf528eb9d96f5468d6f8556ff73202190bef68de3</citedby><cites>FETCH-LOGICAL-c323t-ca0be20916e9aaaa956b0461cf528eb9d96f5468d6f8556ff73202190bef68de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5571817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5571817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luengo, I</creatorcontrib><creatorcontrib>Navas, E</creatorcontrib><creatorcontrib>Hernáez, Inmaculada</creatorcontrib><title>Feature Analysis and Evaluation for Automatic Emotion Identification in Speech</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The definition of parameters is a crucial step in the development of a system for identifying emotions in speech. Although there is no agreement on which are the best features for this task, it is generally accepted that prosody carries most of the emotional information. Most works in the field use some kind of prosodic features, often in combination with spectral and voice quality parametrizations. Nevertheless, no systematic study has been done comparing these features. This paper presents the analysis of the characteristics of features derived from prosody, spectral envelope, and voice quality as well as their capability to discriminate emotions. In addition, early fusion and late fusion techniques for combining different information sources are evaluated. The results of this analysis are validated with experimental automatic emotion identification tests. Results suggest that spectral envelope features outperform the prosodic ones. Even when different parametrizations are combined, the late fusion of long-term spectral statistics with short-term spectral envelope parameters provides an accuracy comparable to that obtained when all parametrizations are combined.</description><subject>Dispersion</subject><subject>Emotion identification</subject><subject>Emotions</subject><subject>Envelopes</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>information fusion</subject><subject>Labeling</subject><subject>Mel frequency cepstral coefficient</subject><subject>Multimedia</subject><subject>Parametrization</subject><subject>Spectra</subject><subject>Speech</subject><subject>Statistics</subject><subject>Voice</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQhS0EEqWwI7FEYmBKOTuxHY9V1UIlCgNljlznLFwlcYkTpP57XFoxcMvdO33vpHuE3FKYUArqcb1aTRhExYDTQrIzMqIqpymAlOdx5gxSxShckqsQtgA05yBH5HWBuh86TKatrvfBhUS3VTL_1vWge-fbxPoumQ69b6I0ybzxv9tlhW3vrDNHyLXJ-w7RfF6TC6vrgDenPiYfi_l69py-vD0tZ9OX1GQs61OjYYMMFBWodCzFxQZyQY3lrMCNqpSwPBdFJWzBubBWZgwYVdFl4xazMXk43t11_mvA0JeNCwbrWrfoh1AWgvI8A8kjef-P3Pqhi8-GkgJThchUDpGCI2U6H0KHttx1rtHdPkLlId8y5lse8i1P-UbL3dHiEPEP51zSgsrsBx19dcY</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Luengo, I</creator><creator>Navas, E</creator><creator>Hernáez, Inmaculada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201010</creationdate><title>Feature Analysis and Evaluation for Automatic Emotion Identification in Speech</title><author>Luengo, I ; Navas, E ; Hernáez, Inmaculada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-ca0be20916e9aaaa956b0461cf528eb9d96f5468d6f8556ff73202190bef68de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dispersion</topic><topic>Emotion identification</topic><topic>Emotions</topic><topic>Envelopes</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>information fusion</topic><topic>Labeling</topic><topic>Mel frequency cepstral coefficient</topic><topic>Multimedia</topic><topic>Parametrization</topic><topic>Spectra</topic><topic>Speech</topic><topic>Statistics</topic><topic>Voice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luengo, I</creatorcontrib><creatorcontrib>Navas, E</creatorcontrib><creatorcontrib>Hernáez, Inmaculada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luengo, I</au><au>Navas, E</au><au>Hernáez, Inmaculada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Analysis and Evaluation for Automatic Emotion Identification in Speech</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2010-10</date><risdate>2010</risdate><volume>12</volume><issue>6</issue><spage>490</spage><epage>501</epage><pages>490-501</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The definition of parameters is a crucial step in the development of a system for identifying emotions in speech. Although there is no agreement on which are the best features for this task, it is generally accepted that prosody carries most of the emotional information. Most works in the field use some kind of prosodic features, often in combination with spectral and voice quality parametrizations. Nevertheless, no systematic study has been done comparing these features. This paper presents the analysis of the characteristics of features derived from prosody, spectral envelope, and voice quality as well as their capability to discriminate emotions. In addition, early fusion and late fusion techniques for combining different information sources are evaluated. The results of this analysis are validated with experimental automatic emotion identification tests. Results suggest that spectral envelope features outperform the prosodic ones. Even when different parametrizations are combined, the late fusion of long-term spectral statistics with short-term spectral envelope parameters provides an accuracy comparable to that obtained when all parametrizations are combined.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2010.2051872</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2010-10, Vol.12 (6), p.490-501 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_1029863940 |
source | IEEE Electronic Library (IEL) |
subjects | Dispersion Emotion identification Emotions Envelopes Estimation Feature extraction information fusion Labeling Mel frequency cepstral coefficient Multimedia Parametrization Spectra Speech Statistics Voice |
title | Feature Analysis and Evaluation for Automatic Emotion Identification in Speech |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Analysis%20and%20Evaluation%20for%20Automatic%20Emotion%20Identification%20in%20Speech&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Luengo,%20I&rft.date=2010-10&rft.volume=12&rft.issue=6&rft.spage=490&rft.epage=501&rft.pages=490-501&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2010.2051872&rft_dat=%3Cproquest_RIE%3E861543075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029863940&rft_id=info:pmid/&rft_ieee_id=5571817&rfr_iscdi=true |