A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load

Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2010-08, Vol.9 (8), p.2664-2675
Hauptverfasser: Ren Ping Liu, Sutton, G J, Collings, I B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2675
container_issue 8
container_start_page 2664
container_title IEEE transactions on wireless communications
container_volume 9
creator Ren Ping Liu
Sutton, G J
Collings, I B
description Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.
doi_str_mv 10.1109/TWC.2010.061010.091803
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027931669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5487530</ieee_id><sourcerecordid>2721424621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4soOKefQJCAL7505pImTR9n7VSYynDiY4ntRTu6ZjYtY9_ezIoPPt0d_P533C8ILoBOAGhyvXxLJ4z6iUr4KQkoyg-CEQihQsYidbjvuQyBxfI4OHFuRSnEUohRsJySJ9ySRY89Vs0HebQl1sTYlizsC5k2ut65yhFryEOWZURR5o-S23RGtlX3SWZVU3VIbnpjsCW6Kcnc6vI0ODK6dnj2W8fB6yxbpvfh_PnuIZ3Ow4Jz2YWCaYh5JDQwBjJWSlAWFSyhiUGuCxAqQWGkomWB3AhPaEWBJVK_g2Za8HFwNezdtParR9fl68oVWNe6Qdu7HJjiMQX_qEcv_6Er27f-PU9RFiccpEw8JQeqaK1zLZp801Zr3e48lO9l5152vpedD7LzQbYPng_BChH_QiJSseCUfwNq1HU9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027931669</pqid></control><display><type>article</type><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><source>IEEE Xplore</source><creator>Ren Ping Liu ; Sutton, G J ; Collings, I B</creator><creatorcontrib>Ren Ping Liu ; Sutton, G J ; Collings, I B</creatorcontrib><description>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2010.061010.091803</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Buffers ; Delay ; Dynamical systems ; Dynamics ; IEEE 802.11 ; Length measurement ; Loss measurement ; Markov analysis ; Markov chains ; Mathematical analysis ; Mathematical models ; multi-dimensional Markov chain ; Operations research ; QoS ; Quality management ; Quality of service ; Queueing analysis ; Queues ; Queuing theory ; Resource management ; Steady-state ; Studies ; Telecommunication traffic ; Throughput ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2010-08, Vol.9 (8), p.2664-2675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</citedby><cites>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5487530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5487530$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren Ping Liu</creatorcontrib><creatorcontrib>Sutton, G J</creatorcontrib><creatorcontrib>Collings, I B</creatorcontrib><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</description><subject>Buffers</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>IEEE 802.11</subject><subject>Length measurement</subject><subject>Loss measurement</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multi-dimensional Markov chain</subject><subject>Operations research</subject><subject>QoS</subject><subject>Quality management</subject><subject>Quality of service</subject><subject>Queueing analysis</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Resource management</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Telecommunication traffic</subject><subject>Throughput</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFLwzAQx4soOKefQJCAL7505pImTR9n7VSYynDiY4ntRTu6ZjYtY9_ezIoPPt0d_P533C8ILoBOAGhyvXxLJ4z6iUr4KQkoyg-CEQihQsYidbjvuQyBxfI4OHFuRSnEUohRsJySJ9ySRY89Vs0HebQl1sTYlizsC5k2ut65yhFryEOWZURR5o-S23RGtlX3SWZVU3VIbnpjsCW6Kcnc6vI0ODK6dnj2W8fB6yxbpvfh_PnuIZ3Ow4Jz2YWCaYh5JDQwBjJWSlAWFSyhiUGuCxAqQWGkomWB3AhPaEWBJVK_g2Za8HFwNezdtParR9fl68oVWNe6Qdu7HJjiMQX_qEcv_6Er27f-PU9RFiccpEw8JQeqaK1zLZp801Zr3e48lO9l5152vpedD7LzQbYPng_BChH_QiJSseCUfwNq1HU9</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Ren Ping Liu</creator><creator>Sutton, G J</creator><creator>Collings, I B</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><author>Ren Ping Liu ; Sutton, G J ; Collings, I B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buffers</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>IEEE 802.11</topic><topic>Length measurement</topic><topic>Loss measurement</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multi-dimensional Markov chain</topic><topic>Operations research</topic><topic>QoS</topic><topic>Quality management</topic><topic>Quality of service</topic><topic>Queueing analysis</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Resource management</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Telecommunication traffic</topic><topic>Throughput</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren Ping Liu</creatorcontrib><creatorcontrib>Sutton, G J</creatorcontrib><creatorcontrib>Collings, I B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren Ping Liu</au><au>Sutton, G J</au><au>Collings, I B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2010-08</date><risdate>2010</risdate><volume>9</volume><issue>8</issue><spage>2664</spage><epage>2675</epage><pages>2664-2675</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2010.061010.091803</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2010-08, Vol.9 (8), p.2664-2675
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_1027931669
source IEEE Xplore
subjects Buffers
Delay
Dynamical systems
Dynamics
IEEE 802.11
Length measurement
Loss measurement
Markov analysis
Markov chains
Mathematical analysis
Mathematical models
multi-dimensional Markov chain
Operations research
QoS
Quality management
Quality of service
Queueing analysis
Queues
Queuing theory
Resource management
Steady-state
Studies
Telecommunication traffic
Throughput
Wireless communication
title A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Queueing%20Model%20for%20QoS%20Analysis%20of%20IEEE%20802.11%20DCF%20with%20Finite%20Buffer%20and%20Load&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ren%20Ping%20Liu&rft.date=2010-08&rft.volume=9&rft.issue=8&rft.spage=2664&rft.epage=2675&rft.pages=2664-2675&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2010.061010.091803&rft_dat=%3Cproquest_RIE%3E2721424621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027931669&rft_id=info:pmid/&rft_ieee_id=5487530&rfr_iscdi=true