A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load
Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We pres...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2010-08, Vol.9 (8), p.2664-2675 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2675 |
---|---|
container_issue | 8 |
container_start_page | 2664 |
container_title | IEEE transactions on wireless communications |
container_volume | 9 |
creator | Ren Ping Liu Sutton, G J Collings, I B |
description | Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint. |
doi_str_mv | 10.1109/TWC.2010.061010.091803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027931669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5487530</ieee_id><sourcerecordid>2721424621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4soOKefQJCAL7505pImTR9n7VSYynDiY4ntRTu6ZjYtY9_ezIoPPt0d_P533C8ILoBOAGhyvXxLJ4z6iUr4KQkoyg-CEQihQsYidbjvuQyBxfI4OHFuRSnEUohRsJySJ9ySRY89Vs0HebQl1sTYlizsC5k2ut65yhFryEOWZURR5o-S23RGtlX3SWZVU3VIbnpjsCW6Kcnc6vI0ODK6dnj2W8fB6yxbpvfh_PnuIZ3Ow4Jz2YWCaYh5JDQwBjJWSlAWFSyhiUGuCxAqQWGkomWB3AhPaEWBJVK_g2Za8HFwNezdtParR9fl68oVWNe6Qdu7HJjiMQX_qEcv_6Er27f-PU9RFiccpEw8JQeqaK1zLZp801Zr3e48lO9l5152vpedD7LzQbYPng_BChH_QiJSseCUfwNq1HU9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027931669</pqid></control><display><type>article</type><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><source>IEEE Xplore</source><creator>Ren Ping Liu ; Sutton, G J ; Collings, I B</creator><creatorcontrib>Ren Ping Liu ; Sutton, G J ; Collings, I B</creatorcontrib><description>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2010.061010.091803</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Buffers ; Delay ; Dynamical systems ; Dynamics ; IEEE 802.11 ; Length measurement ; Loss measurement ; Markov analysis ; Markov chains ; Mathematical analysis ; Mathematical models ; multi-dimensional Markov chain ; Operations research ; QoS ; Quality management ; Quality of service ; Queueing analysis ; Queues ; Queuing theory ; Resource management ; Steady-state ; Studies ; Telecommunication traffic ; Throughput ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2010-08, Vol.9 (8), p.2664-2675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</citedby><cites>FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5487530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5487530$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren Ping Liu</creatorcontrib><creatorcontrib>Sutton, G J</creatorcontrib><creatorcontrib>Collings, I B</creatorcontrib><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</description><subject>Buffers</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>IEEE 802.11</subject><subject>Length measurement</subject><subject>Loss measurement</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multi-dimensional Markov chain</subject><subject>Operations research</subject><subject>QoS</subject><subject>Quality management</subject><subject>Quality of service</subject><subject>Queueing analysis</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Resource management</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Telecommunication traffic</subject><subject>Throughput</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFLwzAQx4soOKefQJCAL7505pImTR9n7VSYynDiY4ntRTu6ZjYtY9_ezIoPPt0d_P533C8ILoBOAGhyvXxLJ4z6iUr4KQkoyg-CEQihQsYidbjvuQyBxfI4OHFuRSnEUohRsJySJ9ySRY89Vs0HebQl1sTYlizsC5k2ut65yhFryEOWZURR5o-S23RGtlX3SWZVU3VIbnpjsCW6Kcnc6vI0ODK6dnj2W8fB6yxbpvfh_PnuIZ3Ow4Jz2YWCaYh5JDQwBjJWSlAWFSyhiUGuCxAqQWGkomWB3AhPaEWBJVK_g2Za8HFwNezdtParR9fl68oVWNe6Qdu7HJjiMQX_qEcv_6Er27f-PU9RFiccpEw8JQeqaK1zLZp801Zr3e48lO9l5152vpedD7LzQbYPng_BChH_QiJSseCUfwNq1HU9</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Ren Ping Liu</creator><creator>Sutton, G J</creator><creator>Collings, I B</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201008</creationdate><title>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</title><author>Ren Ping Liu ; Sutton, G J ; Collings, I B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-52a17345a122167885024c2909fe3ac1589e5f680dce3f5678a801296ab1a2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buffers</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>IEEE 802.11</topic><topic>Length measurement</topic><topic>Loss measurement</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multi-dimensional Markov chain</topic><topic>Operations research</topic><topic>QoS</topic><topic>Quality management</topic><topic>Quality of service</topic><topic>Queueing analysis</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Resource management</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Telecommunication traffic</topic><topic>Throughput</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren Ping Liu</creatorcontrib><creatorcontrib>Sutton, G J</creatorcontrib><creatorcontrib>Collings, I B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren Ping Liu</au><au>Sutton, G J</au><au>Collings, I B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2010-08</date><risdate>2010</risdate><volume>9</volume><issue>8</issue><spage>2664</spage><epage>2675</epage><pages>2664-2675</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Quality of Service (QoS) and queue management are important issues for IEEE 802.11 systems. However, existing 2-dimensional (2-D) Markov chain models of 802.11 systems are unable to capture the complete QoS performance and queueing behavior due to the lack of an adequate finite buffer model. We present a 3-dimensional (3-D) Markov chain that integrates the 802.11 system contention resolution and queueing processes into one model. The 3 rd dimension, that models the queue length, allows us to accurately capture important QoS measures, delay and loss, plus throughput and queue length, for realistic 802.11 systems with finite buffer under finite load. We derive an efficient method for solving the steady state probabilities of the Markov chain. Our 3-D Markov chain is the first finite buffer model defined and solved for 802.11 systems. The solutions, validated by extensive simulations, capture the system dynamics over a wide range of traffic load, buffer capacity, and network size. Our 3-D model points to the existence of an effective maximum throughput and shows its relationship with buffer capacity. We demonstrate that our 3-D model can also be used in resource allocation to determine adequate buffer sizes under a particular QoS constraint.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2010.061010.091803</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2010-08, Vol.9 (8), p.2664-2675 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_1027931669 |
source | IEEE Xplore |
subjects | Buffers Delay Dynamical systems Dynamics IEEE 802.11 Length measurement Loss measurement Markov analysis Markov chains Mathematical analysis Mathematical models multi-dimensional Markov chain Operations research QoS Quality management Quality of service Queueing analysis Queues Queuing theory Resource management Steady-state Studies Telecommunication traffic Throughput Wireless communication |
title | A New Queueing Model for QoS Analysis of IEEE 802.11 DCF with Finite Buffer and Load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Queueing%20Model%20for%20QoS%20Analysis%20of%20IEEE%20802.11%20DCF%20with%20Finite%20Buffer%20and%20Load&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ren%20Ping%20Liu&rft.date=2010-08&rft.volume=9&rft.issue=8&rft.spage=2664&rft.epage=2675&rft.pages=2664-2675&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2010.061010.091803&rft_dat=%3Cproquest_RIE%3E2721424621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027931669&rft_id=info:pmid/&rft_ieee_id=5487530&rfr_iscdi=true |