On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection

We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2010-06, Vol.4 (3), p.560-570
Hauptverfasser: Austin, Christian D, Moses, Randolph L, Ash, Joshua N, Ertin, Emre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 3
container_start_page 560
container_title IEEE journal of selected topics in signal processing
container_volume 4
creator Austin, Christian D
Moses, Randolph L
Ash, Joshua N
Ertin, Emre
description We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.
doi_str_mv 10.1109/JSTSP.2009.2038313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027182447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5447621</ieee_id><sourcerecordid>2716829251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEqXwA7CJxIJViseO81hCVV4qakWKWFrGGaup0qTYjhB_j9NULNjYI885I88NgksgEwCS374Uq2I5oYTk_mAZA3YUjCCPISJxFh_3NaNRzDk7Dc6s3RDC0wTiUSAXTejWGL5hLV3VNuE9um_EJix20tj-XbWNdaZT-65synApjdyiQxPOrKu2g_ZRuXX42pZYhwtT-l6BNe6d8-BEy9rixeEeB-8Ps9X0KZovHp-nd_NIMZq6iGYyQZURpT8hVgQI6ETJLFO-4rlWwEDLNNe0lBxyzLn0m-WJZlJpUGXGxsHNMHdn2q8OrRPbyiqsa9lg21mRcpbSlALx5PU_ctN2pvGfE0BoChmN49RTdKCUaa01qMXO-G3Nj4dEH7rYhy760MUhdC9dDVKFiH8C9_MSCuwXyfN-JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027182447</pqid></control><display><type>article</type><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</creator><creatorcontrib>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</creatorcontrib><description>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2009.2038313</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing (CS) ; Compressive properties ; Criteria ; Detection ; Direction of arrival estimation ; Image reconstruction ; information criteria ; Joints ; Linear systems ; Mathematical analysis ; Mathematical models ; model order selection ; Noise measurement ; Parameter estimation ; Parametric statistics ; Reconstruction ; Reconstruction algorithms ; Sampling methods ; Sparse matrices ; sparse reconstruction ; Studies ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.560-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</citedby><cites>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5447621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5447621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Austin, Christian D</creatorcontrib><creatorcontrib>Moses, Randolph L</creatorcontrib><creatorcontrib>Ash, Joshua N</creatorcontrib><creatorcontrib>Ertin, Emre</creatorcontrib><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</description><subject>Compressed sensing (CS)</subject><subject>Compressive properties</subject><subject>Criteria</subject><subject>Detection</subject><subject>Direction of arrival estimation</subject><subject>Image reconstruction</subject><subject>information criteria</subject><subject>Joints</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>model order selection</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Parametric statistics</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Sampling methods</subject><subject>Sparse matrices</subject><subject>sparse reconstruction</subject><subject>Studies</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRSMEEqXwA7CJxIJViseO81hCVV4qakWKWFrGGaup0qTYjhB_j9NULNjYI885I88NgksgEwCS374Uq2I5oYTk_mAZA3YUjCCPISJxFh_3NaNRzDk7Dc6s3RDC0wTiUSAXTejWGL5hLV3VNuE9um_EJix20tj-XbWNdaZT-65synApjdyiQxPOrKu2g_ZRuXX42pZYhwtT-l6BNe6d8-BEy9rixeEeB-8Ps9X0KZovHp-nd_NIMZq6iGYyQZURpT8hVgQI6ETJLFO-4rlWwEDLNNe0lBxyzLn0m-WJZlJpUGXGxsHNMHdn2q8OrRPbyiqsa9lg21mRcpbSlALx5PU_ctN2pvGfE0BoChmN49RTdKCUaa01qMXO-G3Nj4dEH7rYhy760MUhdC9dDVKFiH8C9_MSCuwXyfN-JA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Austin, Christian D</creator><creator>Moses, Randolph L</creator><creator>Ash, Joshua N</creator><creator>Ertin, Emre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201006</creationdate><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><author>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Compressed sensing (CS)</topic><topic>Compressive properties</topic><topic>Criteria</topic><topic>Detection</topic><topic>Direction of arrival estimation</topic><topic>Image reconstruction</topic><topic>information criteria</topic><topic>Joints</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>model order selection</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Parametric statistics</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Sampling methods</topic><topic>Sparse matrices</topic><topic>sparse reconstruction</topic><topic>Studies</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Christian D</creatorcontrib><creatorcontrib>Moses, Randolph L</creatorcontrib><creatorcontrib>Ash, Joshua N</creatorcontrib><creatorcontrib>Ertin, Emre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Austin, Christian D</au><au>Moses, Randolph L</au><au>Ash, Joshua N</au><au>Ertin, Emre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2010-06</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>560</spage><epage>570</epage><pages>560-570</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2009.2038313</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.560-570
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_1027182447
source IEEE Electronic Library (IEL)
subjects Compressed sensing (CS)
Compressive properties
Criteria
Detection
Direction of arrival estimation
Image reconstruction
information criteria
Joints
Linear systems
Mathematical analysis
Mathematical models
model order selection
Noise measurement
Parameter estimation
Parametric statistics
Reconstruction
Reconstruction algorithms
Sampling methods
Sparse matrices
sparse reconstruction
Studies
Vectors
title On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relation%20Between%20Sparse%20Reconstruction%20and%20Parameter%20Estimation%20With%20Model%20Order%20Selection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Austin,%20Christian%20D&rft.date=2010-06&rft.volume=4&rft.issue=3&rft.spage=560&rft.epage=570&rft.pages=560-570&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2009.2038313&rft_dat=%3Cproquest_RIE%3E2716829251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027182447&rft_id=info:pmid/&rft_ieee_id=5447621&rfr_iscdi=true