On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection
We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive co...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2010-06, Vol.4 (3), p.560-570 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 3 |
container_start_page | 560 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 4 |
creator | Austin, Christian D Moses, Randolph L Ash, Joshua N Ertin, Emre |
description | We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio. |
doi_str_mv | 10.1109/JSTSP.2009.2038313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027182447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5447621</ieee_id><sourcerecordid>2716829251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEqXwA7CJxIJViseO81hCVV4qakWKWFrGGaup0qTYjhB_j9NULNjYI885I88NgksgEwCS374Uq2I5oYTk_mAZA3YUjCCPISJxFh_3NaNRzDk7Dc6s3RDC0wTiUSAXTejWGL5hLV3VNuE9um_EJix20tj-XbWNdaZT-65synApjdyiQxPOrKu2g_ZRuXX42pZYhwtT-l6BNe6d8-BEy9rixeEeB-8Ps9X0KZovHp-nd_NIMZq6iGYyQZURpT8hVgQI6ETJLFO-4rlWwEDLNNe0lBxyzLn0m-WJZlJpUGXGxsHNMHdn2q8OrRPbyiqsa9lg21mRcpbSlALx5PU_ctN2pvGfE0BoChmN49RTdKCUaa01qMXO-G3Nj4dEH7rYhy760MUhdC9dDVKFiH8C9_MSCuwXyfN-JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027182447</pqid></control><display><type>article</type><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</creator><creatorcontrib>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</creatorcontrib><description>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2009.2038313</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing (CS) ; Compressive properties ; Criteria ; Detection ; Direction of arrival estimation ; Image reconstruction ; information criteria ; Joints ; Linear systems ; Mathematical analysis ; Mathematical models ; model order selection ; Noise measurement ; Parameter estimation ; Parametric statistics ; Reconstruction ; Reconstruction algorithms ; Sampling methods ; Sparse matrices ; sparse reconstruction ; Studies ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.560-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</citedby><cites>FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5447621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5447621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Austin, Christian D</creatorcontrib><creatorcontrib>Moses, Randolph L</creatorcontrib><creatorcontrib>Ash, Joshua N</creatorcontrib><creatorcontrib>Ertin, Emre</creatorcontrib><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</description><subject>Compressed sensing (CS)</subject><subject>Compressive properties</subject><subject>Criteria</subject><subject>Detection</subject><subject>Direction of arrival estimation</subject><subject>Image reconstruction</subject><subject>information criteria</subject><subject>Joints</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>model order selection</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Parametric statistics</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Sampling methods</subject><subject>Sparse matrices</subject><subject>sparse reconstruction</subject><subject>Studies</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRSMEEqXwA7CJxIJViseO81hCVV4qakWKWFrGGaup0qTYjhB_j9NULNjYI885I88NgksgEwCS374Uq2I5oYTk_mAZA3YUjCCPISJxFh_3NaNRzDk7Dc6s3RDC0wTiUSAXTejWGL5hLV3VNuE9um_EJix20tj-XbWNdaZT-65synApjdyiQxPOrKu2g_ZRuXX42pZYhwtT-l6BNe6d8-BEy9rixeEeB-8Ps9X0KZovHp-nd_NIMZq6iGYyQZURpT8hVgQI6ETJLFO-4rlWwEDLNNe0lBxyzLn0m-WJZlJpUGXGxsHNMHdn2q8OrRPbyiqsa9lg21mRcpbSlALx5PU_ctN2pvGfE0BoChmN49RTdKCUaa01qMXO-G3Nj4dEH7rYhy760MUhdC9dDVKFiH8C9_MSCuwXyfN-JA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Austin, Christian D</creator><creator>Moses, Randolph L</creator><creator>Ash, Joshua N</creator><creator>Ertin, Emre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201006</creationdate><title>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</title><author>Austin, Christian D ; Moses, Randolph L ; Ash, Joshua N ; Ertin, Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-28a6ec80cfb14c0101f6ca88c10159fc131fa79f2da519e95a04896f3acf1cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Compressed sensing (CS)</topic><topic>Compressive properties</topic><topic>Criteria</topic><topic>Detection</topic><topic>Direction of arrival estimation</topic><topic>Image reconstruction</topic><topic>information criteria</topic><topic>Joints</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>model order selection</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Parametric statistics</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Sampling methods</topic><topic>Sparse matrices</topic><topic>sparse reconstruction</topic><topic>Studies</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Christian D</creatorcontrib><creatorcontrib>Moses, Randolph L</creatorcontrib><creatorcontrib>Ash, Joshua N</creatorcontrib><creatorcontrib>Ertin, Emre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Austin, Christian D</au><au>Moses, Randolph L</au><au>Ash, Joshua N</au><au>Ertin, Emre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2010-06</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>560</spage><epage>570</epage><pages>560-570</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2009.2038313</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.560-570 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_journals_1027182447 |
source | IEEE Electronic Library (IEL) |
subjects | Compressed sensing (CS) Compressive properties Criteria Detection Direction of arrival estimation Image reconstruction information criteria Joints Linear systems Mathematical analysis Mathematical models model order selection Noise measurement Parameter estimation Parametric statistics Reconstruction Reconstruction algorithms Sampling methods Sparse matrices sparse reconstruction Studies Vectors |
title | On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relation%20Between%20Sparse%20Reconstruction%20and%20Parameter%20Estimation%20With%20Model%20Order%20Selection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Austin,%20Christian%20D&rft.date=2010-06&rft.volume=4&rft.issue=3&rft.spage=560&rft.epage=570&rft.pages=560-570&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2009.2038313&rft_dat=%3Cproquest_RIE%3E2716829251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027182447&rft_id=info:pmid/&rft_ieee_id=5447621&rfr_iscdi=true |