Accumulative Learning using Multiple ANN for Flexible Link Control

This paper presents a scheme of multiple neural networks (MNNs) with a new strategy of combination. This combination can obtain an accumulative learning: the knowledge is increased by gradually adding more neural networks to the system. This scheme is applied to flexible link control via feedback-er...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2010-04, Vol.46 (2), p.508-524
Hauptverfasser: De Almeida Neto, Areolino, Goes, Luis Carlos Sandoval, Nascimento, Cairo Lucio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 2
container_start_page 508
container_title IEEE transactions on aerospace and electronic systems
container_volume 46
creator De Almeida Neto, Areolino
Goes, Luis Carlos Sandoval
Nascimento, Cairo Lucio
description This paper presents a scheme of multiple neural networks (MNNs) with a new strategy of combination. This combination can obtain an accumulative learning: the knowledge is increased by gradually adding more neural networks to the system. This scheme is applied to flexible link control via feedback-error-learning (FEL) strategy, here called multi-network-feedback-error-learning. Three different neural control approaches are used to control a flexible link, and it is shown that a better inverse dynamic model of the plant is obtained in this case.
doi_str_mv 10.1109/TAES.2010.5461638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027176517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5461638</ieee_id><sourcerecordid>1671377123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1a8ea7d46662a44a7624ae741d904bcc56254663f080a65c4a1d9093f0f5878a3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwAxCXShzg0hE3nz2WaQOkMQ6Mc5RlKcro2pG0CP49qTY4cOBi67UfW_aL0DngEQDObxbF5HmU4SgZ5cCJPEADYEykOcfkEA0wBpnmGYNjdBLCOkoqKRmg28KYbtNVunUfNplZ7WtXvyZd6ONjV7VuW9mkmM-TsvHJtLKfbhkLM1e_JeOmbn1TnaKjUlfBnu3zEL1MJ4vxfTp7unsYF7PUECbbFLS0Wqwo5zzTlGrBM6qtoLDKMV0aw3gWT-ekxBJrzgzVfSePumRSSE2G6Gq3d-ub986GVm1cMLaqdG2bLijJGJeSCR7J639J4AKIEJCRiF7-QddN5-v4hwKcCRCcgYgU7CjjmxC8LdXWu432XxFSvf-q91_1_qu9_3HmYjfjrLW__E_3G_-tfko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027176517</pqid></control><display><type>article</type><title>Accumulative Learning using Multiple ANN for Flexible Link Control</title><source>IEEE Electronic Library (IEL)</source><creator>De Almeida Neto, Areolino ; Goes, Luis Carlos Sandoval ; Nascimento, Cairo Lucio</creator><creatorcontrib>De Almeida Neto, Areolino ; Goes, Luis Carlos Sandoval ; Nascimento, Cairo Lucio</creatorcontrib><description>This paper presents a scheme of multiple neural networks (MNNs) with a new strategy of combination. This combination can obtain an accumulative learning: the knowledge is increased by gradually adding more neural networks to the system. This scheme is applied to flexible link control via feedback-error-learning (FEL) strategy, here called multi-network-feedback-error-learning. Three different neural control approaches are used to control a flexible link, and it is shown that a better inverse dynamic model of the plant is obtained in this case.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2010.5461638</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Aircraft components ; Artificial neural networks ; Control nonlinearities ; Control systems ; Dynamical systems ; Electronic systems ; Error correction ; Inverse dynamics ; Inverse problems ; Learning ; Learning theory ; Links ; Neural networks ; Nonlinear control systems ; Nonlinear dynamical systems ; Space technology ; Strategy</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2010-04, Vol.46 (2), p.508-524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1a8ea7d46662a44a7624ae741d904bcc56254663f080a65c4a1d9093f0f5878a3</citedby><cites>FETCH-LOGICAL-c358t-1a8ea7d46662a44a7624ae741d904bcc56254663f080a65c4a1d9093f0f5878a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5461638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5461638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Almeida Neto, Areolino</creatorcontrib><creatorcontrib>Goes, Luis Carlos Sandoval</creatorcontrib><creatorcontrib>Nascimento, Cairo Lucio</creatorcontrib><title>Accumulative Learning using Multiple ANN for Flexible Link Control</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This paper presents a scheme of multiple neural networks (MNNs) with a new strategy of combination. This combination can obtain an accumulative learning: the knowledge is increased by gradually adding more neural networks to the system. This scheme is applied to flexible link control via feedback-error-learning (FEL) strategy, here called multi-network-feedback-error-learning. Three different neural control approaches are used to control a flexible link, and it is shown that a better inverse dynamic model of the plant is obtained in this case.</description><subject>Aerodynamics</subject><subject>Aircraft components</subject><subject>Artificial neural networks</subject><subject>Control nonlinearities</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Electronic systems</subject><subject>Error correction</subject><subject>Inverse dynamics</subject><subject>Inverse problems</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Links</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Space technology</subject><subject>Strategy</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1PwzAMhiMEEmPwAxCXShzg0hE3nz2WaQOkMQ6Mc5RlKcro2pG0CP49qTY4cOBi67UfW_aL0DngEQDObxbF5HmU4SgZ5cCJPEADYEykOcfkEA0wBpnmGYNjdBLCOkoqKRmg28KYbtNVunUfNplZ7WtXvyZd6ONjV7VuW9mkmM-TsvHJtLKfbhkLM1e_JeOmbn1TnaKjUlfBnu3zEL1MJ4vxfTp7unsYF7PUECbbFLS0Wqwo5zzTlGrBM6qtoLDKMV0aw3gWT-ekxBJrzgzVfSePumRSSE2G6Gq3d-ub986GVm1cMLaqdG2bLijJGJeSCR7J639J4AKIEJCRiF7-QddN5-v4hwKcCRCcgYgU7CjjmxC8LdXWu432XxFSvf-q91_1_qu9_3HmYjfjrLW__E_3G_-tfko</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>De Almeida Neto, Areolino</creator><creator>Goes, Luis Carlos Sandoval</creator><creator>Nascimento, Cairo Lucio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201004</creationdate><title>Accumulative Learning using Multiple ANN for Flexible Link Control</title><author>De Almeida Neto, Areolino ; Goes, Luis Carlos Sandoval ; Nascimento, Cairo Lucio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1a8ea7d46662a44a7624ae741d904bcc56254663f080a65c4a1d9093f0f5878a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Aircraft components</topic><topic>Artificial neural networks</topic><topic>Control nonlinearities</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Electronic systems</topic><topic>Error correction</topic><topic>Inverse dynamics</topic><topic>Inverse problems</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Links</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Space technology</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Almeida Neto, Areolino</creatorcontrib><creatorcontrib>Goes, Luis Carlos Sandoval</creatorcontrib><creatorcontrib>Nascimento, Cairo Lucio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Almeida Neto, Areolino</au><au>Goes, Luis Carlos Sandoval</au><au>Nascimento, Cairo Lucio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulative Learning using Multiple ANN for Flexible Link Control</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2010-04</date><risdate>2010</risdate><volume>46</volume><issue>2</issue><spage>508</spage><epage>524</epage><pages>508-524</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This paper presents a scheme of multiple neural networks (MNNs) with a new strategy of combination. This combination can obtain an accumulative learning: the knowledge is increased by gradually adding more neural networks to the system. This scheme is applied to flexible link control via feedback-error-learning (FEL) strategy, here called multi-network-feedback-error-learning. Three different neural control approaches are used to control a flexible link, and it is shown that a better inverse dynamic model of the plant is obtained in this case.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2010.5461638</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2010-04, Vol.46 (2), p.508-524
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_1027176517
source IEEE Electronic Library (IEL)
subjects Aerodynamics
Aircraft components
Artificial neural networks
Control nonlinearities
Control systems
Dynamical systems
Electronic systems
Error correction
Inverse dynamics
Inverse problems
Learning
Learning theory
Links
Neural networks
Nonlinear control systems
Nonlinear dynamical systems
Space technology
Strategy
title Accumulative Learning using Multiple ANN for Flexible Link Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulative%20Learning%20using%20Multiple%20ANN%20for%20Flexible%20Link%20Control&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=De%20Almeida%20Neto,%20Areolino&rft.date=2010-04&rft.volume=46&rft.issue=2&rft.spage=508&rft.epage=524&rft.pages=508-524&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2010.5461638&rft_dat=%3Cproquest_RIE%3E1671377123%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027176517&rft_id=info:pmid/&rft_ieee_id=5461638&rfr_iscdi=true