Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator

Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-05, Vol.58 (5), p.2746-2756
1. Verfasser: Nadler, Boaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2756
container_issue 5
container_start_page 2746
container_title IEEE transactions on signal processing
container_volume 58
creator Nadler, Boaz
description Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AIC) and minimum description length (MDL). We present three contributions on this subject. First, we derive a new expression for the detection performance of the MDL estimator, which exhibits a much closer fit to simulations in comparison to previous formulas. Second, we present a random matrix theory viewpoint of the performance of the AIC estimator, including approximate analytical formulas for its overestimation probability. Finally, we show that a small increase in the penalty term of AIC leads to an estimator with a very good detection performance and a negligible overestimation probability.
doi_str_mv 10.1109/TSP.2010.2042481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027168368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5406089</ieee_id><sourcerecordid>753734809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-dba398c495f6baf36c8b3d121bfa4ba633639bd04a49e16809146f0bd08e2acf3</originalsourceid><addsrcrecordid>eNpdkUtrGzEUhUVpIamTfaAbQSlZTaLXaEbdBSdtDaEJ2IHsBo3mKlGwR64kF_zve_0gi4KEHvc7B10dQi44u-KcmevF_PFKMDwJpoRq-Qdyyo3iFVON_oh7VsuqbpvnE_I55zfGuFJGn5LyO45rm-wKSgqO3kIBV0IcafR0Hl5Gu8y039LZ6GNa2X1l8QoxQUF6mkKBFOx3-ghpD4wO6A2KtjlkascBJ52t1in-hYHe5RLQI6Yz8smjMZwf1wl5-nG3mP6q7h9-zqY395VTmpdq6K00rVOm9rq3XmrX9nLggvfeqt5qKbU0_cCUVQa4bpnhSnuGNy0I67yckMuDLz7gzwZy6VYhO1gu7Qhxk7umlo1UqEPy63_kW9ykXfcdZ6JBc4ljQtiBcinmnMB364QdpS1C3S6FDlPodil0xxRQ8u1obLOzS5_wi0J-1wnRiNbwnfWXAxcA4L1cK6ZZa-Q_0bSRfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027168368</pqid></control><display><type>article</type><title>Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Nadler, Boaz</creator><creatorcontrib>Nadler, Boaz</creatorcontrib><description>Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AIC) and minimum description length (MDL). We present three contributions on this subject. First, we derive a new expression for the detection performance of the MDL estimator, which exhibits a much closer fit to simulations in comparison to previous formulas. Second, we present a random matrix theory viewpoint of the performance of the AIC estimator, including approximate analytical formulas for its overestimation probability. Finally, we show that a small increase in the penalty term of AIC leads to an estimator with a very good detection performance and a negligible overestimation probability.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2010.2042481</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Array signal processing ; Computer science ; Covariance matrix ; Criteria ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Estimators ; Exact sciences and technology ; Information theoretic criteria ; Information theory ; Information, signal and communications theory ; Mathematical analysis ; Mathematics ; Matrix theory ; Miscellaneous ; Performance analysis ; Probability ; random matrix theory ; Sensor arrays ; Signal analysis ; Signal and communications theory ; Signal detection ; Signal processing ; Signal, noise ; Simulation ; source enumeration ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2010-05, Vol.58 (5), p.2746-2756</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-dba398c495f6baf36c8b3d121bfa4ba633639bd04a49e16809146f0bd08e2acf3</citedby><cites>FETCH-LOGICAL-c461t-dba398c495f6baf36c8b3d121bfa4ba633639bd04a49e16809146f0bd08e2acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5406089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5406089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22728918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadler, Boaz</creatorcontrib><title>Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AIC) and minimum description length (MDL). We present three contributions on this subject. First, we derive a new expression for the detection performance of the MDL estimator, which exhibits a much closer fit to simulations in comparison to previous formulas. Second, we present a random matrix theory viewpoint of the performance of the AIC estimator, including approximate analytical formulas for its overestimation probability. Finally, we show that a small increase in the penalty term of AIC leads to an estimator with a very good detection performance and a negligible overestimation probability.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Array signal processing</subject><subject>Computer science</subject><subject>Covariance matrix</subject><subject>Criteria</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Information theoretic criteria</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrix theory</subject><subject>Miscellaneous</subject><subject>Performance analysis</subject><subject>Probability</subject><subject>random matrix theory</subject><subject>Sensor arrays</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Simulation</subject><subject>source enumeration</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtrGzEUhUVpIamTfaAbQSlZTaLXaEbdBSdtDaEJ2IHsBo3mKlGwR64kF_zve_0gi4KEHvc7B10dQi44u-KcmevF_PFKMDwJpoRq-Qdyyo3iFVON_oh7VsuqbpvnE_I55zfGuFJGn5LyO45rm-wKSgqO3kIBV0IcafR0Hl5Gu8y039LZ6GNa2X1l8QoxQUF6mkKBFOx3-ghpD4wO6A2KtjlkascBJ52t1in-hYHe5RLQI6Yz8smjMZwf1wl5-nG3mP6q7h9-zqY395VTmpdq6K00rVOm9rq3XmrX9nLggvfeqt5qKbU0_cCUVQa4bpnhSnuGNy0I67yckMuDLz7gzwZy6VYhO1gu7Qhxk7umlo1UqEPy63_kW9ykXfcdZ6JBc4ljQtiBcinmnMB364QdpS1C3S6FDlPodil0xxRQ8u1obLOzS5_wi0J-1wnRiNbwnfWXAxcA4L1cK6ZZa-Q_0bSRfQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Nadler, Boaz</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100501</creationdate><title>Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator</title><author>Nadler, Boaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-dba398c495f6baf36c8b3d121bfa4ba633639bd04a49e16809146f0bd08e2acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Array signal processing</topic><topic>Computer science</topic><topic>Covariance matrix</topic><topic>Criteria</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Information theoretic criteria</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrix theory</topic><topic>Miscellaneous</topic><topic>Performance analysis</topic><topic>Probability</topic><topic>random matrix theory</topic><topic>Sensor arrays</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Simulation</topic><topic>source enumeration</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadler, Boaz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nadler, Boaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>58</volume><issue>5</issue><spage>2746</spage><epage>2756</epage><pages>2746-2756</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Determining the number of sources from observed data is a fundamental problem in many scientific fields. In this paper we consider the nonparametric setting, and focus on the detection performance of two popular estimators based on information theoretic criteria, the Akaike information criterion (AIC) and minimum description length (MDL). We present three contributions on this subject. First, we derive a new expression for the detection performance of the MDL estimator, which exhibits a much closer fit to simulations in comparison to previous formulas. Second, we present a random matrix theory viewpoint of the performance of the AIC estimator, including approximate analytical formulas for its overestimation probability. Finally, we show that a small increase in the penalty term of AIC leads to an estimator with a very good detection performance and a negligible overestimation probability.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2010.2042481</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2010-05, Vol.58 (5), p.2746-2756
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1027168368
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation
Array signal processing
Computer science
Covariance matrix
Criteria
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Estimators
Exact sciences and technology
Information theoretic criteria
Information theory
Information, signal and communications theory
Mathematical analysis
Mathematics
Matrix theory
Miscellaneous
Performance analysis
Probability
random matrix theory
Sensor arrays
Signal analysis
Signal and communications theory
Signal detection
Signal processing
Signal, noise
Simulation
source enumeration
Telecommunications and information theory
title Nonparametric Detection of Signals by Information Theoretic Criteria: Performance Analysis and an Improved Estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Detection%20of%20Signals%20by%20Information%20Theoretic%20Criteria:%20Performance%20Analysis%20and%20an%20Improved%20Estimator&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Nadler,%20Boaz&rft.date=2010-05-01&rft.volume=58&rft.issue=5&rft.spage=2746&rft.epage=2756&rft.pages=2746-2756&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2010.2042481&rft_dat=%3Cproquest_RIE%3E753734809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027168368&rft_id=info:pmid/&rft_ieee_id=5406089&rfr_iscdi=true