Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers

The linearity of conventional pseudomorphic AlGaAs/InGaAs/AlGaAs high-electron mobility transistors with planar doping in the AlGaAs layers is shown to degrade at low temperatures down to -40°C, as measured by the adjacent-channel power ratio under wideband code-division multiple-access modulation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2010-04, Vol.57 (4), p.749-754
Hauptverfasser: Skromme, B.J., Sasikumar, A., Green, B.M., Hartin, O.L., Weitzel, C.E., Miller, M.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 4
container_start_page 749
container_title IEEE transactions on electron devices
container_volume 57
creator Skromme, B.J.
Sasikumar, A.
Green, B.M.
Hartin, O.L.
Weitzel, C.E.
Miller, M.G.
description The linearity of conventional pseudomorphic AlGaAs/InGaAs/AlGaAs high-electron mobility transistors with planar doping in the AlGaAs layers is shown to degrade at low temperatures down to -40°C, as measured by the adjacent-channel power ratio under wideband code-division multiple-access modulation. A modified structure, in which the planar Si doping layers are placed within thin single GaAs quantum wells inside the AlGaAs barrier layers, eliminates this degradation. Deep-level transient spectroscopy and persistent photocapacitance measurements show that trapping on DX centers is effectively eliminated. The linearity improvements are therefore attributed to the elimination of this trapping. Self-consistent solutions of the Schro¿dinger and Poisson equations show that the transfer of the donor electrons into the channel is essentially the same in the modified and conventional structures.
doi_str_mv 10.1109/TED.2010.2041868
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027153382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5427054</ieee_id><sourcerecordid>1315687026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d6f0d4883ff4f31221c6b6cebda5700a0cf35c17573b5b68b40b6afd8317f53c3</originalsourceid><addsrcrecordid>eNp9kc1rGzEUxEVpoa7be6EXQSntZRN9rD72aGw3CThJSV3obdFqn6jCruRKu5T895WxyaGHnobh_WbgMQi9p-SCUtJc7rebC0aKY6SmWuoXaEGFUFUja_kSLQihumq45q_Rm5wfi5V1zRZofIB-tpOPAUeHd_FPtYfxAMlMcwJ8F8PgA5jkJw8Z-4C_ZZj7OMZ0-OUtXg1XZpUvb8JR8PX2dp_xZgY8RfzdVw8wmAl6vPmJ1xAmSPkteuXMkOHdWZfox9ftfn1d7e6vbtarXWW5llPVS0f6WmvuXO04ZYxa2UkLXW-EIsQQ67iwVAnFO9FJ3dWkk8b1mlPlBLd8iT6feg8p_p4hT-3os4VhMAHinNuGSU4pV6yQX_5LUk6F1IqUwBJ9_Ad9jHMK5Y-WEqao4FwfC8mJsinmnMC1h-RHk54K1B6XastS7XGp9rxUiXw6F5tszeCSCdbn5xxjijVSkcJ9OHEeAJ7PomaKiJr_BX4Emi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027153382</pqid></control><display><type>article</type><title>Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers</title><source>IEEE Electronic Library (IEL)</source><creator>Skromme, B.J. ; Sasikumar, A. ; Green, B.M. ; Hartin, O.L. ; Weitzel, C.E. ; Miller, M.G.</creator><creatorcontrib>Skromme, B.J. ; Sasikumar, A. ; Green, B.M. ; Hartin, O.L. ; Weitzel, C.E. ; Miller, M.G.</creatorcontrib><description>The linearity of conventional pseudomorphic AlGaAs/InGaAs/AlGaAs high-electron mobility transistors with planar doping in the AlGaAs layers is shown to degrade at low temperatures down to -40°C, as measured by the adjacent-channel power ratio under wideband code-division multiple-access modulation. A modified structure, in which the planar Si doping layers are placed within thin single GaAs quantum wells inside the AlGaAs barrier layers, eliminates this degradation. Deep-level transient spectroscopy and persistent photocapacitance measurements show that trapping on DX centers is effectively eliminated. The linearity improvements are therefore attributed to the elimination of this trapping. Self-consistent solutions of the Schro¿dinger and Poisson equations show that the transfer of the donor electrons into the channel is essentially the same in the modified and conventional structures.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2010.2041868</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum gallium arsenides ; Applied sciences ; Charge carrier processes ; Compound structure devices ; deep levels ; Deep-level transient spectroscopy (DLTS) ; Degradation ; Doping ; DX centers ; Electronics ; Exact sciences and technology ; Gallium arsenide ; Indium gallium arsenides ; Linearity ; MODFETs ; modulation-doped field-effect transistors (MODFETs) ; PHEMTs ; quantum-well devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Temperature measurement ; Transistors ; Trapping</subject><ispartof>IEEE transactions on electron devices, 2010-04, Vol.57 (4), p.749-754</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d6f0d4883ff4f31221c6b6cebda5700a0cf35c17573b5b68b40b6afd8317f53c3</citedby><cites>FETCH-LOGICAL-c386t-d6f0d4883ff4f31221c6b6cebda5700a0cf35c17573b5b68b40b6afd8317f53c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5427054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5427054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22729670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skromme, B.J.</creatorcontrib><creatorcontrib>Sasikumar, A.</creatorcontrib><creatorcontrib>Green, B.M.</creatorcontrib><creatorcontrib>Hartin, O.L.</creatorcontrib><creatorcontrib>Weitzel, C.E.</creatorcontrib><creatorcontrib>Miller, M.G.</creatorcontrib><title>Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The linearity of conventional pseudomorphic AlGaAs/InGaAs/AlGaAs high-electron mobility transistors with planar doping in the AlGaAs layers is shown to degrade at low temperatures down to -40°C, as measured by the adjacent-channel power ratio under wideband code-division multiple-access modulation. A modified structure, in which the planar Si doping layers are placed within thin single GaAs quantum wells inside the AlGaAs barrier layers, eliminates this degradation. Deep-level transient spectroscopy and persistent photocapacitance measurements show that trapping on DX centers is effectively eliminated. The linearity improvements are therefore attributed to the elimination of this trapping. Self-consistent solutions of the Schro¿dinger and Poisson equations show that the transfer of the donor electrons into the channel is essentially the same in the modified and conventional structures.</description><subject>Aluminum gallium arsenides</subject><subject>Applied sciences</subject><subject>Charge carrier processes</subject><subject>Compound structure devices</subject><subject>deep levels</subject><subject>Deep-level transient spectroscopy (DLTS)</subject><subject>Degradation</subject><subject>Doping</subject><subject>DX centers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Indium gallium arsenides</subject><subject>Linearity</subject><subject>MODFETs</subject><subject>modulation-doped field-effect transistors (MODFETs)</subject><subject>PHEMTs</subject><subject>quantum-well devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Temperature measurement</subject><subject>Transistors</subject><subject>Trapping</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rGzEUxEVpoa7be6EXQSntZRN9rD72aGw3CThJSV3obdFqn6jCruRKu5T895WxyaGHnobh_WbgMQi9p-SCUtJc7rebC0aKY6SmWuoXaEGFUFUja_kSLQihumq45q_Rm5wfi5V1zRZofIB-tpOPAUeHd_FPtYfxAMlMcwJ8F8PgA5jkJw8Z-4C_ZZj7OMZ0-OUtXg1XZpUvb8JR8PX2dp_xZgY8RfzdVw8wmAl6vPmJ1xAmSPkteuXMkOHdWZfox9ftfn1d7e6vbtarXWW5llPVS0f6WmvuXO04ZYxa2UkLXW-EIsQQ67iwVAnFO9FJ3dWkk8b1mlPlBLd8iT6feg8p_p4hT-3os4VhMAHinNuGSU4pV6yQX_5LUk6F1IqUwBJ9_Ad9jHMK5Y-WEqao4FwfC8mJsinmnMC1h-RHk54K1B6XastS7XGp9rxUiXw6F5tszeCSCdbn5xxjijVSkcJ9OHEeAJ7PomaKiJr_BX4Emi4</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Skromme, B.J.</creator><creator>Sasikumar, A.</creator><creator>Green, B.M.</creator><creator>Hartin, O.L.</creator><creator>Weitzel, C.E.</creator><creator>Miller, M.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20100401</creationdate><title>Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers</title><author>Skromme, B.J. ; Sasikumar, A. ; Green, B.M. ; Hartin, O.L. ; Weitzel, C.E. ; Miller, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d6f0d4883ff4f31221c6b6cebda5700a0cf35c17573b5b68b40b6afd8317f53c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum gallium arsenides</topic><topic>Applied sciences</topic><topic>Charge carrier processes</topic><topic>Compound structure devices</topic><topic>deep levels</topic><topic>Deep-level transient spectroscopy (DLTS)</topic><topic>Degradation</topic><topic>Doping</topic><topic>DX centers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Indium gallium arsenides</topic><topic>Linearity</topic><topic>MODFETs</topic><topic>modulation-doped field-effect transistors (MODFETs)</topic><topic>PHEMTs</topic><topic>quantum-well devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Temperature measurement</topic><topic>Transistors</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skromme, B.J.</creatorcontrib><creatorcontrib>Sasikumar, A.</creatorcontrib><creatorcontrib>Green, B.M.</creatorcontrib><creatorcontrib>Hartin, O.L.</creatorcontrib><creatorcontrib>Weitzel, C.E.</creatorcontrib><creatorcontrib>Miller, M.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skromme, B.J.</au><au>Sasikumar, A.</au><au>Green, B.M.</au><au>Hartin, O.L.</au><au>Weitzel, C.E.</au><au>Miller, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>57</volume><issue>4</issue><spage>749</spage><epage>754</epage><pages>749-754</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The linearity of conventional pseudomorphic AlGaAs/InGaAs/AlGaAs high-electron mobility transistors with planar doping in the AlGaAs layers is shown to degrade at low temperatures down to -40°C, as measured by the adjacent-channel power ratio under wideband code-division multiple-access modulation. A modified structure, in which the planar Si doping layers are placed within thin single GaAs quantum wells inside the AlGaAs barrier layers, eliminates this degradation. Deep-level transient spectroscopy and persistent photocapacitance measurements show that trapping on DX centers is effectively eliminated. The linearity improvements are therefore attributed to the elimination of this trapping. Self-consistent solutions of the Schro¿dinger and Poisson equations show that the transfer of the donor electrons into the channel is essentially the same in the modified and conventional structures.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2010.2041868</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2010-04, Vol.57 (4), p.749-754
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_1027153382
source IEEE Electronic Library (IEL)
subjects Aluminum gallium arsenides
Applied sciences
Charge carrier processes
Compound structure devices
deep levels
Deep-level transient spectroscopy (DLTS)
Degradation
Doping
DX centers
Electronics
Exact sciences and technology
Gallium arsenide
Indium gallium arsenides
Linearity
MODFETs
modulation-doped field-effect transistors (MODFETs)
PHEMTs
quantum-well devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Temperature measurement
Transistors
Trapping
title Reduction of Low-Temperature Nonlinearities in Pseudomorphic AlGaAs/InGaAs HEMTs Due to Si-Related DX Centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Low-Temperature%20Nonlinearities%20in%20Pseudomorphic%20AlGaAs/InGaAs%20HEMTs%20Due%20to%20Si-Related%20DX%20Centers&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Skromme,%20B.J.&rft.date=2010-04-01&rft.volume=57&rft.issue=4&rft.spage=749&rft.epage=754&rft.pages=749-754&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2010.2041868&rft_dat=%3Cproquest_RIE%3E1315687026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027153382&rft_id=info:pmid/&rft_ieee_id=5427054&rfr_iscdi=true