Dosimetry of rhenium-188 diethylene triamine penta-acetic acid for endovascular intra-balloon brachytherapy after coronary angioplasty

To examine the possibility of using rhenium-188 diethylene triamine penta-acetic acid (DTPA) for endovascular intra-balloon brachytherapy after angioplasty, dose distribution around the balloon was calculated and validated by film dosimetry. Medical internal radiation dosimetry (MIRD) was calculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine 2000-01, Vol.27 (1), p.76-82
Hauptverfasser: LEE, J, DONG SOO LEE, KYEONG MIN KIM, JEONG SEOK YEO, GI JEONG CHEON, SEOK KI KIM, JI YOUNG AHN, JAE MIN JEONG, CHUNG, J.-K, MYUNG CHUL LEE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To examine the possibility of using rhenium-188 diethylene triamine penta-acetic acid (DTPA) for endovascular intra-balloon brachytherapy after angioplasty, dose distribution around the balloon was calculated and validated by film dosimetry. Medical internal radiation dosimetry (MIRD) was calculated assuming that the balloon had ruptured and that the contents had been released into the systemic circulation. 188Re-perrhenate eluate from the 188W/188Re generator was concentrated using an ion column and used to label DTPA. The dose distribution around the angioplasty balloon (20 mm length, 3 mm diameter cylinder) was estimated by Monte Carlo simulation using the EGS4 code. The time required for 17.6 Gy to be absorbed at 1 mm from the balloon's surface following application of 3700 MBq/ml of 188Re was found to be 278 s. Fifty percent of the energy was deposited in the first millimetre of the vessel wall from the balloon's surface. The calculated radiation absorbed dose agreed with that measured by film dosimetry, which was performed using a water phantom, with errors ranging from 9.4% to 17%. Upon balloon rupture the total amount of 188Re-DTPA was presumed to enter the systemic circulation. The resulting radiation absorbed dose was calculated using the MIRDOSE3 program and residence times obtained from dogs and amounted to 0.0056 mGy/MBq to the whole body and 4.56 mGy/MBq to the urinary bladder. The absorbed dose of 188Re-DTPA to the whole body was one-tenth of that of 188Re-perrhenate. A window-based program was developed to calculate the exposure time and the radiation dose absorbed as a function of the 188Re concentration and the arbitrary distance from the balloon to the surrounding tissues. We conclude that 188Re-DTPA is easy to prepare, safe to use and suitable for intra-balloon brachytherapy after coronary angioplasty.
ISSN:0340-6997
1619-7070
1619-7089
DOI:10.1007/pl00006667