A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables
► A method for solving the Optimal Power Flow problem is proposed. ► A penalty function is presented to handle the discrete control variables. ► Numerical tests indicate that the method is efficient. The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric p...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2012-11, Vol.222 (3), p.616-622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 622 |
---|---|
container_issue | 3 |
container_start_page | 616 |
container_title | European journal of operational research |
container_volume | 222 |
creator | Soler, Edilaine Martins de Sousa, Vanusa Alves da Costa, Geraldo R.M. |
description | ► A method for solving the Optimal Power Flow problem is proposed. ► A penalty function is presented to handle the discrete control variables. ► Numerical tests indicate that the method is efficient.
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal–Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. |
doi_str_mv | 10.1016/j.ejor.2012.05.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1026558357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221712003700</els_id><sourcerecordid>2712602211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-4ae486da1db3fd84baf2800f1d18ea0a25350e0df1bc35d352df27dca1a544c3</originalsourceid><addsrcrecordid>eNp9kM1O3DAYRa2KSh1oX6ArS1WXCf6JEyOxoVCg0lSwYG957M-Mo0w82M6MuusLdMUb9klwGNRlV_bi3Hvtg9BnSmpKaHva19CHWDNCWU1ETRh9hxZUdqxqZUuO0ILwrqsYo90HdJxSTwihgooF-nOBN8F658Hi--g3evj7-_lq0gNehkcdfV5vvKm-6Rg9RPwT8jpY7ELEKQw7Pz7ivAZ8t81zEt-HfYGuh7DH2xhWA2zwvjRg65OJkAHr0WITxuzHKUzp9RrDgHdlSBc8fUTvnR4SfHo7T9DD9feHy9tqeXfz4_JiWRkuz3LVaGhkazW1K-6sbFbaMUmIo5ZK0EQzwQUBYh1dGS4sF8w61lmjqRZNY_gJ-nKoLa98miBl1YcpjmVRUcJaISQXXaHYgTIxpBTBqe0sKP4qkJqtq17N1tVsXRGhivUS-vpWrZPRg4t6ND79S7KWSsH4WeHODxyUb-6KW5WMh9GA9RFMVjb4_828AJsnnEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1026558357</pqid></control><display><type>article</type><title>A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables</title><source>Access via ScienceDirect (Elsevier)</source><creator>Soler, Edilaine Martins ; de Sousa, Vanusa Alves ; da Costa, Geraldo R.M.</creator><creatorcontrib>Soler, Edilaine Martins ; de Sousa, Vanusa Alves ; da Costa, Geraldo R.M.</creatorcontrib><description>► A method for solving the Optimal Power Flow problem is proposed. ► A penalty function is presented to handle the discrete control variables. ► Numerical tests indicate that the method is efficient.
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal–Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2012.05.021</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Discrete variables ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electricity distribution ; Exact sciences and technology ; Interior point methods ; Mathematical functions ; Mathematical problems ; Mathematical programming ; Nonlinear programming ; Operation. Load control. Reliability ; Operational research and scientific management ; Operational research. Management science ; Optimal Power Flow ; OR in energy ; Power networks and lines ; Studies ; Transformers</subject><ispartof>European journal of operational research, 2012-11, Vol.222 (3), p.616-622</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-4ae486da1db3fd84baf2800f1d18ea0a25350e0df1bc35d352df27dca1a544c3</citedby><cites>FETCH-LOGICAL-c389t-4ae486da1db3fd84baf2800f1d18ea0a25350e0df1bc35d352df27dca1a544c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2012.05.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26185239$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Soler, Edilaine Martins</creatorcontrib><creatorcontrib>de Sousa, Vanusa Alves</creatorcontrib><creatorcontrib>da Costa, Geraldo R.M.</creatorcontrib><title>A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables</title><title>European journal of operational research</title><description>► A method for solving the Optimal Power Flow problem is proposed. ► A penalty function is presented to handle the discrete control variables. ► Numerical tests indicate that the method is efficient.
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal–Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient.</description><subject>Applied sciences</subject><subject>Discrete variables</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electricity distribution</subject><subject>Exact sciences and technology</subject><subject>Interior point methods</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematical programming</subject><subject>Nonlinear programming</subject><subject>Operation. Load control. Reliability</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimal Power Flow</subject><subject>OR in energy</subject><subject>Power networks and lines</subject><subject>Studies</subject><subject>Transformers</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAYRa2KSh1oX6ArS1WXCf6JEyOxoVCg0lSwYG957M-Mo0w82M6MuusLdMUb9klwGNRlV_bi3Hvtg9BnSmpKaHva19CHWDNCWU1ETRh9hxZUdqxqZUuO0ILwrqsYo90HdJxSTwihgooF-nOBN8F658Hi--g3evj7-_lq0gNehkcdfV5vvKm-6Rg9RPwT8jpY7ELEKQw7Pz7ivAZ8t81zEt-HfYGuh7DH2xhWA2zwvjRg65OJkAHr0WITxuzHKUzp9RrDgHdlSBc8fUTvnR4SfHo7T9DD9feHy9tqeXfz4_JiWRkuz3LVaGhkazW1K-6sbFbaMUmIo5ZK0EQzwQUBYh1dGS4sF8w61lmjqRZNY_gJ-nKoLa98miBl1YcpjmVRUcJaISQXXaHYgTIxpBTBqe0sKP4qkJqtq17N1tVsXRGhivUS-vpWrZPRg4t6ND79S7KWSsH4WeHODxyUb-6KW5WMh9GA9RFMVjb4_828AJsnnEE</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Soler, Edilaine Martins</creator><creator>de Sousa, Vanusa Alves</creator><creator>da Costa, Geraldo R.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables</title><author>Soler, Edilaine Martins ; de Sousa, Vanusa Alves ; da Costa, Geraldo R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-4ae486da1db3fd84baf2800f1d18ea0a25350e0df1bc35d352df27dca1a544c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Discrete variables</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electricity distribution</topic><topic>Exact sciences and technology</topic><topic>Interior point methods</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematical programming</topic><topic>Nonlinear programming</topic><topic>Operation. Load control. Reliability</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimal Power Flow</topic><topic>OR in energy</topic><topic>Power networks and lines</topic><topic>Studies</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soler, Edilaine Martins</creatorcontrib><creatorcontrib>de Sousa, Vanusa Alves</creatorcontrib><creatorcontrib>da Costa, Geraldo R.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soler, Edilaine Martins</au><au>de Sousa, Vanusa Alves</au><au>da Costa, Geraldo R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables</atitle><jtitle>European journal of operational research</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>222</volume><issue>3</issue><spage>616</spage><epage>622</epage><pages>616-622</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>► A method for solving the Optimal Power Flow problem is proposed. ► A penalty function is presented to handle the discrete control variables. ► Numerical tests indicate that the method is efficient.
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal–Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2012.05.021</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2012-11, Vol.222 (3), p.616-622 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_1026558357 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Discrete variables Electrical engineering. Electrical power engineering Electrical power engineering Electricity distribution Exact sciences and technology Interior point methods Mathematical functions Mathematical problems Mathematical programming Nonlinear programming Operation. Load control. Reliability Operational research and scientific management Operational research. Management science Optimal Power Flow OR in energy Power networks and lines Studies Transformers |
title | A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20Primal%E2%80%93Dual%20Logarithmic-Barrier%20Method%20for%20solving%20the%20Optimal%20Power%20Flow%20problem%20with%20discrete%20and%20continuous%20control%20variables&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Soler,%20Edilaine%20Martins&rft.date=2012-11-01&rft.volume=222&rft.issue=3&rft.spage=616&rft.epage=622&rft.pages=616-622&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2012.05.021&rft_dat=%3Cproquest_cross%3E2712602211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1026558357&rft_id=info:pmid/&rft_els_id=S0377221712003700&rfr_iscdi=true |