Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q

Low‐molecular‐weight GTP‐binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. Dramatic reorganization of the actin cytoskeleton is caused by the C3 exoenzyme derived from Clostridium botulinum (C3), based on ADP‐ribosylation of RhoA/B/C. In addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2012-08, Vol.279 (15), p.2657-2671
Hauptverfasser: Rohrbeck, Astrid, Kolbe, Tanja, Hagemann, Sandra, Genth, Harald, Just, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2671
container_issue 15
container_start_page 2657
container_title The FEBS journal
container_volume 279
creator Rohrbeck, Astrid
Kolbe, Tanja
Hagemann, Sandra
Genth, Harald
Just, Ingo
description Low‐molecular‐weight GTP‐binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. Dramatic reorganization of the actin cytoskeleton is caused by the C3 exoenzyme derived from Clostridium botulinum (C3), based on ADP‐ribosylation of RhoA/B/C. In addition, wild‐type as well as ADP‐ribosyltransferase‐deficient C3‐E174Q induce axonal outgrowth of primary murine hippocampal neurons and prevent growth cone collapse, indicating a non‐enzymatic mode of action. In this study, we compared the effects of C3‐E174Q and wild‐type C3 in the murine hippocampal cell line HT22. Treatment of HT22 cells with C3 resulted in Rho ADP‐ribosylation and cell rounding. The ADP‐ribosyltransferase‐deficient mutant C3‐E174Q did not induce either Rho ADP‐ribosylation or morphological changes. C3 as well as C3‐E174Q treatment resulted in growth arrest, reduced expression of cyclin D levels, and increased expression of RhoB, a negative regulator of cell‐cycle progression. Serum starvation induced apoptosis in HT22 cells, as determined on the basis of increased expression of caspase‐9 and Bax. C3 but not C3‐E174Q protected serum‐starved HT22 cells from apoptosis. This is the first study separating ADP‐ribosyltransferase‐dependent from ADP‐ribosyltransferase‐independent effects of C3. While morphological changes and anti‐apoptotic activity strictly depend on ADP‐ribosyltransferase activity, the anti‐proliferative effects are independent of ADP‐ribosyltransferase activity. Structured digital •  Rhotekin physicallyinteracts with RHOA by pulldown (Viewinteraction) In this study, the biological effects of C3 and enzyme‐deficient C3‐E174Q are differentially analyzed in a sensitive neuronal cell line. Both C3 and C3‐E174Q induce inhibition of cell proliferation. In contrast, actin re‐organization and the anti‐apoptotic activity are only exhibited by C3, thus depending on the ART activity
doi_str_mv 10.1111/j.1742-4658.2012.08645.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1024638852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709146671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5145-341dd5298ab9f77ce93bbfd4a48723da09c410cce4eec65f8490e25c11e1af8e3</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOl5eQQquW5M0adONoDPjBQQVFdyFND2RlNpq0tGZnY_gM_okps44a7PJOcl3zg8fQhHBCQnnuE5IzmjMMi4SiglNsMgYT-YbaLT-2FzX7GkH7XpfY5xyVhTbaIfSjJI84yP0NLG-t63uo9J2TfdstWoipXv7bnsLPupMNE4j1VbR6eT2-_PL2bLzi6Z3qvUGnPIQHiswVlto-8CGdhpy7_bRllGNh4PVvYcez6cP48v4-ubianx6HWtOGI9TRqqK00KosjB5rqFIy9JUTDGR07RSuNCMYK2BAeiMG8EKDJRrQoAoIyDdQ0fLva-ue5uB72XdzVwbIiXBlGWpEJwGSiwp7TrvHRj56uyLcosAyUGprOVgSw7m5KBU_iqV8zB6uAqYlS9QrQf_HAbgZAl82AYW_14sz6dn90OZ_gD3CId_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024638852</pqid></control><display><type>article</type><title>Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>IngentaConnect Open Access</source><source>Wiley Online Library Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Rohrbeck, Astrid ; Kolbe, Tanja ; Hagemann, Sandra ; Genth, Harald ; Just, Ingo</creator><creatorcontrib>Rohrbeck, Astrid ; Kolbe, Tanja ; Hagemann, Sandra ; Genth, Harald ; Just, Ingo</creatorcontrib><description>Low‐molecular‐weight GTP‐binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. Dramatic reorganization of the actin cytoskeleton is caused by the C3 exoenzyme derived from Clostridium botulinum (C3), based on ADP‐ribosylation of RhoA/B/C. In addition, wild‐type as well as ADP‐ribosyltransferase‐deficient C3‐E174Q induce axonal outgrowth of primary murine hippocampal neurons and prevent growth cone collapse, indicating a non‐enzymatic mode of action. In this study, we compared the effects of C3‐E174Q and wild‐type C3 in the murine hippocampal cell line HT22. Treatment of HT22 cells with C3 resulted in Rho ADP‐ribosylation and cell rounding. The ADP‐ribosyltransferase‐deficient mutant C3‐E174Q did not induce either Rho ADP‐ribosylation or morphological changes. C3 as well as C3‐E174Q treatment resulted in growth arrest, reduced expression of cyclin D levels, and increased expression of RhoB, a negative regulator of cell‐cycle progression. Serum starvation induced apoptosis in HT22 cells, as determined on the basis of increased expression of caspase‐9 and Bax. C3 but not C3‐E174Q protected serum‐starved HT22 cells from apoptosis. This is the first study separating ADP‐ribosyltransferase‐dependent from ADP‐ribosyltransferase‐independent effects of C3. While morphological changes and anti‐apoptotic activity strictly depend on ADP‐ribosyltransferase activity, the anti‐proliferative effects are independent of ADP‐ribosyltransferase activity. Structured digital •  Rhotekin physicallyinteracts with RHOA by pulldown (Viewinteraction) In this study, the biological effects of C3 and enzyme‐deficient C3‐E174Q are differentially analyzed in a sensitive neuronal cell line. Both C3 and C3‐E174Q induce inhibition of cell proliferation. In contrast, actin re‐organization and the anti‐apoptotic activity are only exhibited by C3, thus depending on the ART activity</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2012.08645.x</identifier><identifier>PMID: 22621765</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ADP Ribose Transferases - chemistry ; ADP Ribose Transferases - genetics ; ADP Ribose Transferases - metabolism ; ADP Ribose Transferases - toxicity ; ADP‐ribosyltransferase ; Amino Acid Substitution ; Animals ; apoptosis ; Apoptosis - drug effects ; Base Sequence ; Botulinum Toxins - chemistry ; Botulinum Toxins - genetics ; Botulinum Toxins - metabolism ; Botulinum Toxins - toxicity ; C3 exoenzyme ; Caspases - genetics ; Caspases - metabolism ; Cell Line ; Cell Proliferation - drug effects ; Cell Shape - drug effects ; Clostridium botulinum - enzymology ; Clostridium botulinum - genetics ; Cyclin D - metabolism ; Cytoskeleton ; Enzymes ; Eukaryotes ; Gene Expression - drug effects ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hippocampus - pathology ; Kinetics ; Mice ; Morphology ; proliferation ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Recombinant Proteins - toxicity ; RhoA ; rhoB GTP-Binding Protein - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism</subject><ispartof>The FEBS journal, 2012-08, Vol.279 (15), p.2657-2671</ispartof><rights>2012 The Authors Journal compilation © 2012 FEBS</rights><rights>2012 The Authors Journal compilation © 2012 FEBS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5145-341dd5298ab9f77ce93bbfd4a48723da09c410cce4eec65f8490e25c11e1af8e3</citedby><cites>FETCH-LOGICAL-c5145-341dd5298ab9f77ce93bbfd4a48723da09c410cce4eec65f8490e25c11e1af8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2012.08645.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2012.08645.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22621765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohrbeck, Astrid</creatorcontrib><creatorcontrib>Kolbe, Tanja</creatorcontrib><creatorcontrib>Hagemann, Sandra</creatorcontrib><creatorcontrib>Genth, Harald</creatorcontrib><creatorcontrib>Just, Ingo</creatorcontrib><title>Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Low‐molecular‐weight GTP‐binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. Dramatic reorganization of the actin cytoskeleton is caused by the C3 exoenzyme derived from Clostridium botulinum (C3), based on ADP‐ribosylation of RhoA/B/C. In addition, wild‐type as well as ADP‐ribosyltransferase‐deficient C3‐E174Q induce axonal outgrowth of primary murine hippocampal neurons and prevent growth cone collapse, indicating a non‐enzymatic mode of action. In this study, we compared the effects of C3‐E174Q and wild‐type C3 in the murine hippocampal cell line HT22. Treatment of HT22 cells with C3 resulted in Rho ADP‐ribosylation and cell rounding. The ADP‐ribosyltransferase‐deficient mutant C3‐E174Q did not induce either Rho ADP‐ribosylation or morphological changes. C3 as well as C3‐E174Q treatment resulted in growth arrest, reduced expression of cyclin D levels, and increased expression of RhoB, a negative regulator of cell‐cycle progression. Serum starvation induced apoptosis in HT22 cells, as determined on the basis of increased expression of caspase‐9 and Bax. C3 but not C3‐E174Q protected serum‐starved HT22 cells from apoptosis. This is the first study separating ADP‐ribosyltransferase‐dependent from ADP‐ribosyltransferase‐independent effects of C3. While morphological changes and anti‐apoptotic activity strictly depend on ADP‐ribosyltransferase activity, the anti‐proliferative effects are independent of ADP‐ribosyltransferase activity. Structured digital •  Rhotekin physicallyinteracts with RHOA by pulldown (Viewinteraction) In this study, the biological effects of C3 and enzyme‐deficient C3‐E174Q are differentially analyzed in a sensitive neuronal cell line. Both C3 and C3‐E174Q induce inhibition of cell proliferation. In contrast, actin re‐organization and the anti‐apoptotic activity are only exhibited by C3, thus depending on the ART activity</description><subject>ADP Ribose Transferases - chemistry</subject><subject>ADP Ribose Transferases - genetics</subject><subject>ADP Ribose Transferases - metabolism</subject><subject>ADP Ribose Transferases - toxicity</subject><subject>ADP‐ribosyltransferase</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Base Sequence</subject><subject>Botulinum Toxins - chemistry</subject><subject>Botulinum Toxins - genetics</subject><subject>Botulinum Toxins - metabolism</subject><subject>Botulinum Toxins - toxicity</subject><subject>C3 exoenzyme</subject><subject>Caspases - genetics</subject><subject>Caspases - metabolism</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Clostridium botulinum - enzymology</subject><subject>Clostridium botulinum - genetics</subject><subject>Cyclin D - metabolism</subject><subject>Cytoskeleton</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Gene Expression - drug effects</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Morphology</subject><subject>proliferation</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombinant Proteins - toxicity</subject><subject>RhoA</subject><subject>rhoB GTP-Binding Protein - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtKxDAUhoMoOl5eQQquW5M0adONoDPjBQQVFdyFND2RlNpq0tGZnY_gM_okps44a7PJOcl3zg8fQhHBCQnnuE5IzmjMMi4SiglNsMgYT-YbaLT-2FzX7GkH7XpfY5xyVhTbaIfSjJI84yP0NLG-t63uo9J2TfdstWoipXv7bnsLPupMNE4j1VbR6eT2-_PL2bLzi6Z3qvUGnPIQHiswVlto-8CGdhpy7_bRllGNh4PVvYcez6cP48v4-ubianx6HWtOGI9TRqqK00KosjB5rqFIy9JUTDGR07RSuNCMYK2BAeiMG8EKDJRrQoAoIyDdQ0fLva-ue5uB72XdzVwbIiXBlGWpEJwGSiwp7TrvHRj56uyLcosAyUGprOVgSw7m5KBU_iqV8zB6uAqYlS9QrQf_HAbgZAl82AYW_14sz6dn90OZ_gD3CId_</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Rohrbeck, Astrid</creator><creator>Kolbe, Tanja</creator><creator>Hagemann, Sandra</creator><creator>Genth, Harald</creator><creator>Just, Ingo</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201208</creationdate><title>Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q</title><author>Rohrbeck, Astrid ; Kolbe, Tanja ; Hagemann, Sandra ; Genth, Harald ; Just, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5145-341dd5298ab9f77ce93bbfd4a48723da09c410cce4eec65f8490e25c11e1af8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ADP Ribose Transferases - chemistry</topic><topic>ADP Ribose Transferases - genetics</topic><topic>ADP Ribose Transferases - metabolism</topic><topic>ADP Ribose Transferases - toxicity</topic><topic>ADP‐ribosyltransferase</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Base Sequence</topic><topic>Botulinum Toxins - chemistry</topic><topic>Botulinum Toxins - genetics</topic><topic>Botulinum Toxins - metabolism</topic><topic>Botulinum Toxins - toxicity</topic><topic>C3 exoenzyme</topic><topic>Caspases - genetics</topic><topic>Caspases - metabolism</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Clostridium botulinum - enzymology</topic><topic>Clostridium botulinum - genetics</topic><topic>Cyclin D - metabolism</topic><topic>Cytoskeleton</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Gene Expression - drug effects</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Morphology</topic><topic>proliferation</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombinant Proteins - toxicity</topic><topic>RhoA</topic><topic>rhoB GTP-Binding Protein - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohrbeck, Astrid</creatorcontrib><creatorcontrib>Kolbe, Tanja</creatorcontrib><creatorcontrib>Hagemann, Sandra</creatorcontrib><creatorcontrib>Genth, Harald</creatorcontrib><creatorcontrib>Just, Ingo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohrbeck, Astrid</au><au>Kolbe, Tanja</au><au>Hagemann, Sandra</au><au>Genth, Harald</au><au>Just, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2012-08</date><risdate>2012</risdate><volume>279</volume><issue>15</issue><spage>2657</spage><epage>2671</epage><pages>2657-2671</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Low‐molecular‐weight GTP‐binding proteins of the Rho family control the organization of the actin cytoskeleton in eukaryotic cells. Dramatic reorganization of the actin cytoskeleton is caused by the C3 exoenzyme derived from Clostridium botulinum (C3), based on ADP‐ribosylation of RhoA/B/C. In addition, wild‐type as well as ADP‐ribosyltransferase‐deficient C3‐E174Q induce axonal outgrowth of primary murine hippocampal neurons and prevent growth cone collapse, indicating a non‐enzymatic mode of action. In this study, we compared the effects of C3‐E174Q and wild‐type C3 in the murine hippocampal cell line HT22. Treatment of HT22 cells with C3 resulted in Rho ADP‐ribosylation and cell rounding. The ADP‐ribosyltransferase‐deficient mutant C3‐E174Q did not induce either Rho ADP‐ribosylation or morphological changes. C3 as well as C3‐E174Q treatment resulted in growth arrest, reduced expression of cyclin D levels, and increased expression of RhoB, a negative regulator of cell‐cycle progression. Serum starvation induced apoptosis in HT22 cells, as determined on the basis of increased expression of caspase‐9 and Bax. C3 but not C3‐E174Q protected serum‐starved HT22 cells from apoptosis. This is the first study separating ADP‐ribosyltransferase‐dependent from ADP‐ribosyltransferase‐independent effects of C3. While morphological changes and anti‐apoptotic activity strictly depend on ADP‐ribosyltransferase activity, the anti‐proliferative effects are independent of ADP‐ribosyltransferase activity. Structured digital •  Rhotekin physicallyinteracts with RHOA by pulldown (Viewinteraction) In this study, the biological effects of C3 and enzyme‐deficient C3‐E174Q are differentially analyzed in a sensitive neuronal cell line. Both C3 and C3‐E174Q induce inhibition of cell proliferation. In contrast, actin re‐organization and the anti‐apoptotic activity are only exhibited by C3, thus depending on the ART activity</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22621765</pmid><doi>10.1111/j.1742-4658.2012.08645.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2012-08, Vol.279 (15), p.2657-2671
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_journals_1024638852
source Wiley-Blackwell Journals; MEDLINE; IngentaConnect Open Access; Wiley Online Library Free Content; Free Full-Text Journals in Chemistry
subjects ADP Ribose Transferases - chemistry
ADP Ribose Transferases - genetics
ADP Ribose Transferases - metabolism
ADP Ribose Transferases - toxicity
ADP‐ribosyltransferase
Amino Acid Substitution
Animals
apoptosis
Apoptosis - drug effects
Base Sequence
Botulinum Toxins - chemistry
Botulinum Toxins - genetics
Botulinum Toxins - metabolism
Botulinum Toxins - toxicity
C3 exoenzyme
Caspases - genetics
Caspases - metabolism
Cell Line
Cell Proliferation - drug effects
Cell Shape - drug effects
Clostridium botulinum - enzymology
Clostridium botulinum - genetics
Cyclin D - metabolism
Cytoskeleton
Enzymes
Eukaryotes
Gene Expression - drug effects
Hippocampus - drug effects
Hippocampus - metabolism
Hippocampus - pathology
Kinetics
Mice
Morphology
proliferation
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Recombinant Proteins - toxicity
RhoA
rhoB GTP-Binding Protein - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
title Distinct biological activities of C3 and ADP‐ribosyltransferase‐deficient C3‐E174Q
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20biological%20activities%20of%20C3%20and%20ADP%E2%80%90ribosyltransferase%E2%80%90deficient%20C3%E2%80%90E174Q&rft.jtitle=The%20FEBS%20journal&rft.au=Rohrbeck,%20Astrid&rft.date=2012-08&rft.volume=279&rft.issue=15&rft.spage=2657&rft.epage=2671&rft.pages=2657-2671&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2012.08645.x&rft_dat=%3Cproquest_cross%3E2709146671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024638852&rft_id=info:pmid/22621765&rfr_iscdi=true