Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations
Abstract We consider â,, n skew-products of a class of hyperbolic dynamical systems. It was proved by Nitica and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257-269] that for an Anosov diffeomorphism [varphi] of an infranilmanifo...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2012-08, Vol.32 (4), p.1435 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1435 |
container_title | Ergodic theory and dynamical systems |
container_volume | 32 |
creator | MOSS, A WALKDEN, C P |
description | Abstract We consider â,, n skew-products of a class of hyperbolic dynamical systems. It was proved by Nitica and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257-269] that for an Anosov diffeomorphism [varphi] of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ[arrow right]â,, N for which the skew-product [varphi] f (x,v)=([varphi](x),v+f(x)) on Λ×â,, N has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1017/S0143385711000228 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1024425164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707782451</sourcerecordid><originalsourceid>FETCH-proquest_journals_10244251643</originalsourceid><addsrcrecordid>eNqNjE1uwjAUhC0EUsPPAbqzxDYpfolD6LqiYh_WjRzktEYmL9iPCq7Tq3CxOsABWI003zfD2CuINxBQLEoBMstWeQEghEjT1YBFIJfviZRQDFnU46TnL2zs_T44GRR5xL5KUrXVnLBDi99mpywnp1pvyPwauvDOYacdGe05Nvz6F8e85Yk-kw4Otrf25xKUGq3Z3bcNuoOink7ZqFHW69kjJ2z-ud5-bJJwezxpT9UeT64NqAKRSpnmsJTZc9Y_IjBMLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024425164</pqid></control><display><type>article</type><title>Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations</title><source>Cambridge University Press Journals Complete</source><creator>MOSS, A ; WALKDEN, C P</creator><creatorcontrib>MOSS, A ; WALKDEN, C P</creatorcontrib><description>Abstract We consider â,, n skew-products of a class of hyperbolic dynamical systems. It was proved by Nitica and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257-269] that for an Anosov diffeomorphism [varphi] of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ[arrow right]â,, N for which the skew-product [varphi] f (x,v)=([varphi](x),v+f(x)) on Λ×â,, N has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385711000228</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Dynamical systems ; Topology</subject><ispartof>Ergodic theory and dynamical systems, 2012-08, Vol.32 (4), p.1435</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>MOSS, A</creatorcontrib><creatorcontrib>WALKDEN, C P</creatorcontrib><title>Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations</title><title>Ergodic theory and dynamical systems</title><description>Abstract We consider â,, n skew-products of a class of hyperbolic dynamical systems. It was proved by Nitica and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257-269] that for an Anosov diffeomorphism [varphi] of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ[arrow right]â,, N for which the skew-product [varphi] f (x,v)=([varphi](x),v+f(x)) on Λ×â,, N has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor. [PUBLICATION ABSTRACT]</description><subject>Dynamical systems</subject><subject>Topology</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE1uwjAUhC0EUsPPAbqzxDYpfolD6LqiYh_WjRzktEYmL9iPCq7Tq3CxOsABWI003zfD2CuINxBQLEoBMstWeQEghEjT1YBFIJfviZRQDFnU46TnL2zs_T44GRR5xL5KUrXVnLBDi99mpywnp1pvyPwauvDOYacdGe05Nvz6F8e85Yk-kw4Otrf25xKUGq3Z3bcNuoOink7ZqFHW69kjJ2z-ud5-bJJwezxpT9UeT64NqAKRSpnmsJTZc9Y_IjBMLA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>MOSS, A</creator><creator>WALKDEN, C P</creator><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120801</creationdate><title>Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations</title><author>MOSS, A ; WALKDEN, C P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_10244251643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamical systems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOSS, A</creatorcontrib><creatorcontrib>WALKDEN, C P</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOSS, A</au><au>WALKDEN, C P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>32</volume><issue>4</issue><spage>1435</spage><pages>1435-</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Abstract We consider â,, n skew-products of a class of hyperbolic dynamical systems. It was proved by Nitica and Pollicott [Transitivity of Euclidean extensions of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 25 (2005), 257-269] that for an Anosov diffeomorphism [varphi] of an infranilmanifold Λ there is (subject to avoiding natural obstructions) an open and dense set f:Λ[arrow right]â,, N for which the skew-product [varphi] f (x,v)=([varphi](x),v+f(x)) on Λ×â,, N has a dense orbit. We prove a similar result in the context of an Axiom A hyperbolic flow on an attractor. [PUBLICATION ABSTRACT]</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385711000228</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2012-08, Vol.32 (4), p.1435 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_1024425164 |
source | Cambridge University Press Journals Complete |
subjects | Dynamical systems Topology |
title | Stable topological transitivity properties of â,, n -extensions of hyperbolic transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20topological%20transitivity%20properties%20of%20%C3%A2,,%20n%20-extensions%20of%20hyperbolic%20transformations&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=MOSS,%20A&rft.date=2012-08-01&rft.volume=32&rft.issue=4&rft.spage=1435&rft.pages=1435-&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385711000228&rft_dat=%3Cproquest%3E2707782451%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024425164&rft_id=info:pmid/&rfr_iscdi=true |