Transient nature of Arctic spring systems driven by subglacial meltwater

In the High Arctic, supra‐ and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2012-06, Vol.39 (12), p.n/a
Hauptverfasser: Scheidegger, J. M., Bense, V. F., Grasby, S. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Geophysical research letters
container_volume 39
creator Scheidegger, J. M.
Bense, V. F.
Grasby, S. E.
description In the High Arctic, supra‐ and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet‐based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps. Key Points Springs surrounded by thick permafrost are of transient nature Springs in permafrost can persist for millennia Glacier meltwater fed springs provide a possible analog for springs on Mars
doi_str_mv 10.1029/2012GL051445
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1024003520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705346281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3748-f5dde0e3cebf6f45d21a43cfbb06a75efbacdcf22bfa4540abe96e7bcc951e173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs3f0BAvLmaz93usRTdqlVBKhYvIclOytbttiZba_-9kRbx5Gnm8DzvMC9Cp5RcUsLyK0YoK0ZEUiHkHurQXIikR0i2jzqE5HFnWXqIjkKYEUI44bSDhmOvm1BB0-JGtysPeOFw39u2sjgsfdVMcdiEFuYBl776hAabDQ4rM621rXSN51C3a92CP0YHTtcBTnazi15urseDYTJ6Km4H_VFieSZ6iZNlCQS4BeNSJ2TJqBbcOmNIqjMJzmhbWseYcVpIQbSBPIXMWJtLCjTjXXS2zV36xccKQqtmi5Vv4kkVOxDxL8lIpC62lPWLEDw4FX-Za7-J0A-Xq79dRfx8F6qD1bWLndgq_Dos5SnLZRo5tuXWVQ2bfzNV8TxiOeW9KCVbqYo9fv1K2r-rNOOZVK-PhXp4o_d3cjJRPf4NDReH8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024003520</pqid></control><display><type>article</type><title>Transient nature of Arctic spring systems driven by subglacial meltwater</title><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Scheidegger, J. M. ; Bense, V. F. ; Grasby, S. E.</creator><creatorcontrib>Scheidegger, J. M. ; Bense, V. F. ; Grasby, S. E.</creatorcontrib><description>In the High Arctic, supra‐ and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet‐based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps. Key Points Springs surrounded by thick permafrost are of transient nature Springs in permafrost can persist for millennia Glacier meltwater fed springs provide a possible analog for springs on Mars</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2012GL051445</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Ambient temperature ; Arctic hydrogeology ; Cryosphere ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow rates ; Fluid flow ; Groundwater ; Groundwater discharge ; Hydrology ; Ice caps ; Meltwater ; Permafrost ; Sulfur ; supraglacial springs ; Surface temperature ; Water springs</subject><ispartof>Geophysical research letters, 2012-06, Vol.39 (12), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Geophysical Union 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3748-f5dde0e3cebf6f45d21a43cfbb06a75efbacdcf22bfa4540abe96e7bcc951e173</citedby><cites>FETCH-LOGICAL-c3748-f5dde0e3cebf6f45d21a43cfbb06a75efbacdcf22bfa4540abe96e7bcc951e173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012GL051445$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012GL051445$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26362956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheidegger, J. M.</creatorcontrib><creatorcontrib>Bense, V. F.</creatorcontrib><creatorcontrib>Grasby, S. E.</creatorcontrib><title>Transient nature of Arctic spring systems driven by subglacial meltwater</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>In the High Arctic, supra‐ and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet‐based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps. Key Points Springs surrounded by thick permafrost are of transient nature Springs in permafrost can persist for millennia Glacier meltwater fed springs provide a possible analog for springs on Mars</description><subject>Ambient temperature</subject><subject>Arctic hydrogeology</subject><subject>Cryosphere</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fluid flow</subject><subject>Groundwater</subject><subject>Groundwater discharge</subject><subject>Hydrology</subject><subject>Ice caps</subject><subject>Meltwater</subject><subject>Permafrost</subject><subject>Sulfur</subject><subject>supraglacial springs</subject><subject>Surface temperature</subject><subject>Water springs</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs3f0BAvLmaz93usRTdqlVBKhYvIclOytbttiZba_-9kRbx5Gnm8DzvMC9Cp5RcUsLyK0YoK0ZEUiHkHurQXIikR0i2jzqE5HFnWXqIjkKYEUI44bSDhmOvm1BB0-JGtysPeOFw39u2sjgsfdVMcdiEFuYBl776hAabDQ4rM621rXSN51C3a92CP0YHTtcBTnazi15urseDYTJ6Km4H_VFieSZ6iZNlCQS4BeNSJ2TJqBbcOmNIqjMJzmhbWseYcVpIQbSBPIXMWJtLCjTjXXS2zV36xccKQqtmi5Vv4kkVOxDxL8lIpC62lPWLEDw4FX-Za7-J0A-Xq79dRfx8F6qD1bWLndgq_Dos5SnLZRo5tuXWVQ2bfzNV8TxiOeW9KCVbqYo9fv1K2r-rNOOZVK-PhXp4o_d3cjJRPf4NDReH8Q</recordid><startdate>20120628</startdate><enddate>20120628</enddate><creator>Scheidegger, J. M.</creator><creator>Bense, V. F.</creator><creator>Grasby, S. E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120628</creationdate><title>Transient nature of Arctic spring systems driven by subglacial meltwater</title><author>Scheidegger, J. M. ; Bense, V. F. ; Grasby, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3748-f5dde0e3cebf6f45d21a43cfbb06a75efbacdcf22bfa4540abe96e7bcc951e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ambient temperature</topic><topic>Arctic hydrogeology</topic><topic>Cryosphere</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fluid flow</topic><topic>Groundwater</topic><topic>Groundwater discharge</topic><topic>Hydrology</topic><topic>Ice caps</topic><topic>Meltwater</topic><topic>Permafrost</topic><topic>Sulfur</topic><topic>supraglacial springs</topic><topic>Surface temperature</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheidegger, J. M.</creatorcontrib><creatorcontrib>Bense, V. F.</creatorcontrib><creatorcontrib>Grasby, S. E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheidegger, J. M.</au><au>Bense, V. F.</au><au>Grasby, S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient nature of Arctic spring systems driven by subglacial meltwater</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2012-06-28</date><risdate>2012</risdate><volume>39</volume><issue>12</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>In the High Arctic, supra‐ and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet‐based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps. Key Points Springs surrounded by thick permafrost are of transient nature Springs in permafrost can persist for millennia Glacier meltwater fed springs provide a possible analog for springs on Mars</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012GL051445</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2012-06, Vol.39 (12), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1024003520
source Wiley Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals
subjects Ambient temperature
Arctic hydrogeology
Cryosphere
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow rates
Fluid flow
Groundwater
Groundwater discharge
Hydrology
Ice caps
Meltwater
Permafrost
Sulfur
supraglacial springs
Surface temperature
Water springs
title Transient nature of Arctic spring systems driven by subglacial meltwater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20nature%20of%20Arctic%20spring%20systems%20driven%20by%20subglacial%20meltwater&rft.jtitle=Geophysical%20research%20letters&rft.au=Scheidegger,%20J.%20M.&rft.date=2012-06-28&rft.volume=39&rft.issue=12&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2012GL051445&rft_dat=%3Cproquest_cross%3E2705346281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024003520&rft_id=info:pmid/&rfr_iscdi=true