Widely accessible method for superresolution fluorescence imaging of living systems

Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (27), p.10909-10914
Hauptverfasser: Dedecker, Peter, Mo, Gary C. H., Dertinger, Thomas, Zhang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10914
container_issue 27
container_start_page 10909
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Dedecker, Peter
Mo, Gary C. H.
Dertinger, Thomas
Zhang, Jin
description Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment whereas single-molecule-based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment genetically encodable labels, and simple and rapid data acquisition, is capable of providing two-to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging.
doi_str_mv 10.1073/pnas.1204917109
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1023506216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41601703</jstor_id><sourcerecordid>41601703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-1380d76a6b781c2038e436f7bf7667f53c745c3a43ef2502e745df10d169df493</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhzAlkiUsvaWdsx04uSKiigFSJAyCOltext1k58WInlfbf47DLFrhw8Xg03zzNzCPkJcIlguJXu9HkS2QgWlQI7SOyKi9WUrTwmKwAmKoawcQZeZbzFgDauoGn5IwxhdgIWJEv3_vOhT011rqc-3VwdHDTXeyoj4nmeedScjmGeerjSH2YY0mtG62j_WA2_bih0dPQ3y-_vM-TG_Jz8sSbkN2LYzwn327ef73-WN1-_vDp-t1tZWvAqULeQKekkWvVoGXAGye49GrtlZTK19wqUVtuBHee1cBcSTuP0KFsOy9afk7eHnR383pwXZlqSiboXSqTpb2Optd_V8b-Tm_ivea8hYZjEbg4CqT4Y3Z50kNflgvBjC7OWWMDHOtyQPl_FBivuZDtovrmH3Qb5zSWSxwokAwXwasDZVPMOTl_mhtBL97qxVv94G3peP3nuif-t5kFoEdg6XyQazVTS_il8eqAbPMU04kRKAEVcP4T3tm0Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023506216</pqid></control><display><type>article</type><title>Widely accessible method for superresolution fluorescence imaging of living systems</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dedecker, Peter ; Mo, Gary C. H. ; Dertinger, Thomas ; Zhang, Jin</creator><creatorcontrib>Dedecker, Peter ; Mo, Gary C. H. ; Dertinger, Thomas ; Zhang, Jin</creatorcontrib><description>Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment whereas single-molecule-based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment genetically encodable labels, and simple and rapid data acquisition, is capable of providing two-to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1204917109</identifier><identifier>PMID: 22711840</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell Biology - instrumentation ; Cell membranes ; Cells ; Diffraction ; Fluorescence ; fluorescence microscopy ; fluorescent proteins ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - genetics ; HeLa Cells ; Humans ; image analysis ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Image resolution ; Imaging ; lighting ; Membrane Microdomains - ultrastructure ; Microscopy ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods ; Molecules ; Pixels ; Signal-To-Noise Ratio ; Spatial resolution ; statistical analysis ; Stochastic models ; Temporal resolution ; Ultraviolet Rays ; Wavelengths</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (27), p.10909-10914</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 3, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-1380d76a6b781c2038e436f7bf7667f53c745c3a43ef2502e745df10d169df493</citedby><cites>FETCH-LOGICAL-c501t-1380d76a6b781c2038e436f7bf7667f53c745c3a43ef2502e745df10d169df493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41601703$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41601703$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22711840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dedecker, Peter</creatorcontrib><creatorcontrib>Mo, Gary C. H.</creatorcontrib><creatorcontrib>Dertinger, Thomas</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><title>Widely accessible method for superresolution fluorescence imaging of living systems</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment whereas single-molecule-based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment genetically encodable labels, and simple and rapid data acquisition, is capable of providing two-to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging.</description><subject>Biological Sciences</subject><subject>Cell Biology - instrumentation</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Diffraction</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>fluorescent proteins</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>lighting</subject><subject>Membrane Microdomains - ultrastructure</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Molecules</subject><subject>Pixels</subject><subject>Signal-To-Noise Ratio</subject><subject>Spatial resolution</subject><subject>statistical analysis</subject><subject>Stochastic models</subject><subject>Temporal resolution</subject><subject>Ultraviolet Rays</subject><subject>Wavelengths</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhzAlkiUsvaWdsx04uSKiigFSJAyCOltext1k58WInlfbf47DLFrhw8Xg03zzNzCPkJcIlguJXu9HkS2QgWlQI7SOyKi9WUrTwmKwAmKoawcQZeZbzFgDauoGn5IwxhdgIWJEv3_vOhT011rqc-3VwdHDTXeyoj4nmeedScjmGeerjSH2YY0mtG62j_WA2_bih0dPQ3y-_vM-TG_Jz8sSbkN2LYzwn327ef73-WN1-_vDp-t1tZWvAqULeQKekkWvVoGXAGye49GrtlZTK19wqUVtuBHee1cBcSTuP0KFsOy9afk7eHnR383pwXZlqSiboXSqTpb2Optd_V8b-Tm_ivea8hYZjEbg4CqT4Y3Z50kNflgvBjC7OWWMDHOtyQPl_FBivuZDtovrmH3Qb5zSWSxwokAwXwasDZVPMOTl_mhtBL97qxVv94G3peP3nuif-t5kFoEdg6XyQazVTS_il8eqAbPMU04kRKAEVcP4T3tm0Ig</recordid><startdate>20120703</startdate><enddate>20120703</enddate><creator>Dedecker, Peter</creator><creator>Mo, Gary C. H.</creator><creator>Dertinger, Thomas</creator><creator>Zhang, Jin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120703</creationdate><title>Widely accessible method for superresolution fluorescence imaging of living systems</title><author>Dedecker, Peter ; Mo, Gary C. H. ; Dertinger, Thomas ; Zhang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-1380d76a6b781c2038e436f7bf7667f53c745c3a43ef2502e745df10d169df493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Sciences</topic><topic>Cell Biology - instrumentation</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Diffraction</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>fluorescent proteins</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>lighting</topic><topic>Membrane Microdomains - ultrastructure</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Molecules</topic><topic>Pixels</topic><topic>Signal-To-Noise Ratio</topic><topic>Spatial resolution</topic><topic>statistical analysis</topic><topic>Stochastic models</topic><topic>Temporal resolution</topic><topic>Ultraviolet Rays</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dedecker, Peter</creatorcontrib><creatorcontrib>Mo, Gary C. H.</creatorcontrib><creatorcontrib>Dertinger, Thomas</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dedecker, Peter</au><au>Mo, Gary C. H.</au><au>Dertinger, Thomas</au><au>Zhang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widely accessible method for superresolution fluorescence imaging of living systems</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-03</date><risdate>2012</risdate><volume>109</volume><issue>27</issue><spage>10909</spage><epage>10914</epage><pages>10909-10914</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Superresolution fluorescence microscopy overcomes the diffraction resolution barrier and allows the molecular intricacies of life to be revealed with greatly enhanced detail. However, many current superresolution techniques still face limitations and their implementation is typically associated with a steep learning curve. Patterned illumination-based superresolution techniques [e.g., stimulated emission depletion (STED), reversible optically-linear fluorescence transitions (RESOLFT), and saturated structured illumination microscopy (SSIM)] require specialized equipment whereas single-molecule-based approaches [e.g., stochastic optical reconstruction microscopy (STORM), photo-activation localization microscopy (PALM), and fluorescence-PALM (F-PALM)] involve repetitive single-molecule localization, which requires its own set of expertise and is also temporally demanding. Here we present a superresolution fluorescence imaging method, photochromic stochastic optical fluctuation imaging (pcSOFI). In this method, irradiating a reversibly photoswitching fluorescent protein at an appropriate wavelength produces robust single-molecule intensity fluctuations, from which a superresolution picture can be extracted by a statistical analysis of the fluctuations in each pixel as a function of time, as previously demonstrated in SOFI. This method, which uses off-the-shelf equipment genetically encodable labels, and simple and rapid data acquisition, is capable of providing two-to threefold-enhanced spatial resolution, significant background rejection, markedly improved contrast, and favorable temporal resolution in living cells. Furthermore, both 3D and multicolor imaging are readily achievable. Because of its ease of use and high performance, we anticipate that pcSOFI will prove an attractive approach for superresolution imaging.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22711840</pmid><doi>10.1073/pnas.1204917109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (27), p.10909-10914
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1023506216
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Cell Biology - instrumentation
Cell membranes
Cells
Diffraction
Fluorescence
fluorescence microscopy
fluorescent proteins
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - genetics
HeLa Cells
Humans
image analysis
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Image resolution
Imaging
lighting
Membrane Microdomains - ultrastructure
Microscopy
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
Molecules
Pixels
Signal-To-Noise Ratio
Spatial resolution
statistical analysis
Stochastic models
Temporal resolution
Ultraviolet Rays
Wavelengths
title Widely accessible method for superresolution fluorescence imaging of living systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widely%20accessible%20method%20for%20superresolution%20fluorescence%20imaging%20of%20living%20systems&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dedecker,%20Peter&rft.date=2012-07-03&rft.volume=109&rft.issue=27&rft.spage=10909&rft.epage=10914&rft.pages=10909-10914&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1204917109&rft_dat=%3Cjstor_proqu%3E41601703%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023506216&rft_id=info:pmid/22711840&rft_jstor_id=41601703&rfr_iscdi=true