Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference

This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 1997-04, Vol.71 (5), p.282-289
1. Verfasser: RAPP, R. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 5
container_start_page 282
container_title Journal of geodesy
container_volume 71
creator RAPP, R. H
description This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s001900050096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1022614325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699193461</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</originalsourceid><addsrcrecordid>eNplkctKAzEUhoMoWKtL9wHdjs1lMpelFG9QcGPXQ5o56aTMJGOSWfR5fFFTWwRxdTjw_d-B_yB0S8kDJaRcBEJoTQgRhNTFGZrRnLOM8jo_RzNS53VWljS_RFch7BJZiqqYoa91AOw0Hl0EG43ssXKgtVEmrXhwLfQBa-fxFpxp8WTbqZfROItbiOAHY3-2gKdg7BZLHMYOvFFJ1Ek_OGsU9jB6CMl3DKZrsQPcgdl2EUvrBtnvF__9RmvwYBVcowst-wA3pzlH6-enj-Vrtnp_eVs-rjLJKxozraTe6BYEL6DkjNVFC1xQ0eapFkpUIRRXFVTVhm0U0TnPN0ynSF5qCkJqPkd3R-_o3ecEITY7N3mbTjaUMFYc-hSJyo6U8i4ED7oZvRmk3yeoOfyh-fOHxN-frDKkWrSXVpnwG2JFKQTl_BuoJIxy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022614325</pqid></control><display><type>article</type><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><source>SpringerLink Journals</source><creator>RAPP, R. H</creator><creatorcontrib>RAPP, R. H</creatorcontrib><description>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s001900050096</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geodetics ; Internal geophysics ; Mountain regions ; Mountains ; Solid-earth geophysics, tectonophysics, gravimetry</subject><ispartof>Journal of geodesy, 1997-04, Vol.71 (5), p.282-289</ispartof><rights>1997 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2675513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RAPP, R. H</creatorcontrib><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><title>Journal of geodesy</title><description>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geodetics</subject><subject>Internal geophysics</subject><subject>Mountain regions</subject><subject>Mountains</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkctKAzEUhoMoWKtL9wHdjs1lMpelFG9QcGPXQ5o56aTMJGOSWfR5fFFTWwRxdTjw_d-B_yB0S8kDJaRcBEJoTQgRhNTFGZrRnLOM8jo_RzNS53VWljS_RFch7BJZiqqYoa91AOw0Hl0EG43ssXKgtVEmrXhwLfQBa-fxFpxp8WTbqZfROItbiOAHY3-2gKdg7BZLHMYOvFFJ1Ek_OGsU9jB6CMl3DKZrsQPcgdl2EUvrBtnvF__9RmvwYBVcowst-wA3pzlH6-enj-Vrtnp_eVs-rjLJKxozraTe6BYEL6DkjNVFC1xQ0eapFkpUIRRXFVTVhm0U0TnPN0ynSF5qCkJqPkd3R-_o3ecEITY7N3mbTjaUMFYc-hSJyo6U8i4ED7oZvRmk3yeoOfyh-fOHxN-frDKkWrSXVpnwG2JFKQTl_BuoJIxy</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>RAPP, R. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>19970401</creationdate><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><author>RAPP, R. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geodetics</topic><topic>Internal geophysics</topic><topic>Mountain regions</topic><topic>Mountains</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAPP, R. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAPP, R. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</atitle><jtitle>Journal of geodesy</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>71</volume><issue>5</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s001900050096</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-7714
ispartof Journal of geodesy, 1997-04, Vol.71 (5), p.282-289
issn 0949-7714
1432-1394
language eng
recordid cdi_proquest_journals_1022614325
source SpringerLink Journals
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Geodetics
Internal geophysics
Mountain regions
Mountains
Solid-earth geophysics, tectonophysics, gravimetry
title Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20potential%20coefficient%20models%20for%20geoid%20undulation%20determinations%20using%20a%20spherical%20harmonic%20representation%20of%20the%20height%20anomaly/geoid%20undulation%20difference&rft.jtitle=Journal%20of%20geodesy&rft.au=RAPP,%20R.%20H&rft.date=1997-04-01&rft.volume=71&rft.issue=5&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s001900050096&rft_dat=%3Cproquest_cross%3E2699193461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022614325&rft_id=info:pmid/&rfr_iscdi=true