Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference
This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 1997-04, Vol.71 (5), p.282-289 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 5 |
container_start_page | 282 |
container_title | Journal of geodesy |
container_volume | 71 |
creator | RAPP, R. H |
description | This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s001900050096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1022614325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699193461</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</originalsourceid><addsrcrecordid>eNplkctKAzEUhoMoWKtL9wHdjs1lMpelFG9QcGPXQ5o56aTMJGOSWfR5fFFTWwRxdTjw_d-B_yB0S8kDJaRcBEJoTQgRhNTFGZrRnLOM8jo_RzNS53VWljS_RFch7BJZiqqYoa91AOw0Hl0EG43ssXKgtVEmrXhwLfQBa-fxFpxp8WTbqZfROItbiOAHY3-2gKdg7BZLHMYOvFFJ1Ek_OGsU9jB6CMl3DKZrsQPcgdl2EUvrBtnvF__9RmvwYBVcowst-wA3pzlH6-enj-Vrtnp_eVs-rjLJKxozraTe6BYEL6DkjNVFC1xQ0eapFkpUIRRXFVTVhm0U0TnPN0ynSF5qCkJqPkd3R-_o3ecEITY7N3mbTjaUMFYc-hSJyo6U8i4ED7oZvRmk3yeoOfyh-fOHxN-frDKkWrSXVpnwG2JFKQTl_BuoJIxy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022614325</pqid></control><display><type>article</type><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><source>SpringerLink Journals</source><creator>RAPP, R. H</creator><creatorcontrib>RAPP, R. H</creatorcontrib><description>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s001900050096</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geodetics ; Internal geophysics ; Mountain regions ; Mountains ; Solid-earth geophysics, tectonophysics, gravimetry</subject><ispartof>Journal of geodesy, 1997-04, Vol.71 (5), p.282-289</ispartof><rights>1997 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2675513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RAPP, R. H</creatorcontrib><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><title>Journal of geodesy</title><description>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geodetics</subject><subject>Internal geophysics</subject><subject>Mountain regions</subject><subject>Mountains</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplkctKAzEUhoMoWKtL9wHdjs1lMpelFG9QcGPXQ5o56aTMJGOSWfR5fFFTWwRxdTjw_d-B_yB0S8kDJaRcBEJoTQgRhNTFGZrRnLOM8jo_RzNS53VWljS_RFch7BJZiqqYoa91AOw0Hl0EG43ssXKgtVEmrXhwLfQBa-fxFpxp8WTbqZfROItbiOAHY3-2gKdg7BZLHMYOvFFJ1Ek_OGsU9jB6CMl3DKZrsQPcgdl2EUvrBtnvF__9RmvwYBVcowst-wA3pzlH6-enj-Vrtnp_eVs-rjLJKxozraTe6BYEL6DkjNVFC1xQ0eapFkpUIRRXFVTVhm0U0TnPN0ynSF5qCkJqPkd3R-_o3ecEITY7N3mbTjaUMFYc-hSJyo6U8i4ED7oZvRmk3yeoOfyh-fOHxN-frDKkWrSXVpnwG2JFKQTl_BuoJIxy</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>RAPP, R. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>19970401</creationdate><title>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</title><author>RAPP, R. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-fcafbfde536e732296de3515d401910c65c3c8e88b2bc0f434b2fafb47f1e5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geodetics</topic><topic>Internal geophysics</topic><topic>Mountain regions</topic><topic>Mountains</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAPP, R. H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAPP, R. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference</atitle><jtitle>Journal of geodesy</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>71</volume><issue>5</issue><spage>282</spage><epage>289</epage><pages>282-289</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N-ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30' elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N-ζ reached -3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions.[PUBLICATION ABSTRACT]</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s001900050096</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 1997-04, Vol.71 (5), p.282-289 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_1022614325 |
source | SpringerLink Journals |
subjects | Earth sciences Earth, ocean, space Exact sciences and technology Geodetics Internal geophysics Mountain regions Mountains Solid-earth geophysics, tectonophysics, gravimetry |
title | Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20potential%20coefficient%20models%20for%20geoid%20undulation%20determinations%20using%20a%20spherical%20harmonic%20representation%20of%20the%20height%20anomaly/geoid%20undulation%20difference&rft.jtitle=Journal%20of%20geodesy&rft.au=RAPP,%20R.%20H&rft.date=1997-04-01&rft.volume=71&rft.issue=5&rft.spage=282&rft.epage=289&rft.pages=282-289&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s001900050096&rft_dat=%3Cproquest_cross%3E2699193461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022614325&rft_id=info:pmid/&rfr_iscdi=true |