Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams

Vanadium dioxide is a strongly correlated material 1 , 2 , 3 , 4 that undergoes a metal–insulator transition 5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour depositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2012-06, Vol.7 (6), p.357-362
Hauptverfasser: Wei, Jiang, Ji, Heng, Guo, Wenhua, Nevidomskyy, Andriy H., Natelson, Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 6
container_start_page 357
container_title Nature nanotechnology
container_volume 7
creator Wei, Jiang
Ji, Heng
Guo, Wenhua
Nevidomskyy, Andriy H.
Natelson, Douglas
description Vanadium dioxide is a strongly correlated material 1 , 2 , 3 , 4 that undergoes a metal–insulator transition 5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour deposition 6 have shed light on the crucial role of strain in the structural and electronic phase diagram of this material 7 , 8 , 9 , 10 , including evidence for a new M2 phase 11 , 12 , but the detailed physics of this material is still not fully understood. The transition temperature can be reduced by doping with tungsten 8 , 13 , but this process is not reversible. Here, we show that the metal–insulator transition in nanoscale beams of vanadium dioxide can be strongly modified by doping with atomic hydrogen 14 using the catalytic spillover method 15 . We also show that this process is completely reversible, and that the metal–insulator transition eventually vanishes when the doping exceeds a threshold value. Raman and conventional optical microscopy, electron diffraction and transmission electron microscopy provide evidence that the structure of the metallic post-hydrogenation state is similar to that of the rutile state. First-principles electronic structure calculations confirm that a distorted rutile structure is energetically favoured following hydrogenation, and also that such doping favours metallicity from both the Mott and Peierls perspectives. We anticipate that hydrogen doping will be a powerful tool for examining the metal–insulator transition and for engineering the properties of vanadium dioxide. The metal–insulator transition in vanadium dioxide can be reversibly suppressed to cryogenic temperatures by doping with atomic hydrogen.
doi_str_mv 10.1038/nnano.2012.70
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_1019199866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681186591</sourcerecordid><originalsourceid>FETCH-LOGICAL-p152t-d001e3c369db2af203fddab2590ef3c848e47f243c4ce74ea726252113178daf3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqUwsltiTvBXYntEFVCkSl1gjpz4XLlK7BAniPLrSSlCTHfD8957ehC6pSSnhKv7EEyIOSOU5ZKcoQWVQmWc6-L8b1fyEl2ltCekYJqJBdquD3aIOwg4jab2rf8yo48BR4c7GE3b-gZ_mGCsnzpsffz0FrCfaR92LWTNcJhzLT4212C6dI0unGkT3PzOJXp7enxdrbPN9vll9bDJelqwMbOEUOANL7WtmXGMcGetqVmhCTjeKKFASMcEb0QDUoCRrGQFo5RTqaxxfInuTnf7Ib5PkMZqH6chzJUVJVRTrVVZzlR-olI_zA_D8J-qjtKqH2nVUVolCf8GhRBhkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019199866</pqid></control><display><type>article</type><title>Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams</title><source>SpringerLink Journals</source><source>Nature</source><creator>Wei, Jiang ; Ji, Heng ; Guo, Wenhua ; Nevidomskyy, Andriy H. ; Natelson, Douglas</creator><creatorcontrib>Wei, Jiang ; Ji, Heng ; Guo, Wenhua ; Nevidomskyy, Andriy H. ; Natelson, Douglas</creatorcontrib><description>Vanadium dioxide is a strongly correlated material 1 , 2 , 3 , 4 that undergoes a metal–insulator transition 5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour deposition 6 have shed light on the crucial role of strain in the structural and electronic phase diagram of this material 7 , 8 , 9 , 10 , including evidence for a new M2 phase 11 , 12 , but the detailed physics of this material is still not fully understood. The transition temperature can be reduced by doping with tungsten 8 , 13 , but this process is not reversible. Here, we show that the metal–insulator transition in nanoscale beams of vanadium dioxide can be strongly modified by doping with atomic hydrogen 14 using the catalytic spillover method 15 . We also show that this process is completely reversible, and that the metal–insulator transition eventually vanishes when the doping exceeds a threshold value. Raman and conventional optical microscopy, electron diffraction and transmission electron microscopy provide evidence that the structure of the metallic post-hydrogenation state is similar to that of the rutile state. First-principles electronic structure calculations confirm that a distorted rutile structure is energetically favoured following hydrogenation, and also that such doping favours metallicity from both the Mott and Peierls perspectives. We anticipate that hydrogen doping will be a powerful tool for examining the metal–insulator transition and for engineering the properties of vanadium dioxide. The metal–insulator transition in vanadium dioxide can be reversibly suppressed to cryogenic temperatures by doping with atomic hydrogen.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2012.70</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/537 ; 639/925/357/995 ; 639/925/929/115 ; Chemistry and Materials Science ; Electrons ; Experiments ; Gold ; High temperature ; Hydrogen ; Hydrogenation ; letter ; Light microscopy ; Materials Science ; Metals ; Microscopy ; Nanotechnology ; Nanotechnology and Microengineering ; Phase transitions ; Physics ; Silicon wafers ; Single crystals ; Temperature ; Transition temperatures ; Tungsten ; Vanadium</subject><ispartof>Nature nanotechnology, 2012-06, Vol.7 (6), p.357-362</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p152t-d001e3c369db2af203fddab2590ef3c848e47f243c4ce74ea726252113178daf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2012.70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2012.70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, Jiang</creatorcontrib><creatorcontrib>Ji, Heng</creatorcontrib><creatorcontrib>Guo, Wenhua</creatorcontrib><creatorcontrib>Nevidomskyy, Andriy H.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><title>Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><description>Vanadium dioxide is a strongly correlated material 1 , 2 , 3 , 4 that undergoes a metal–insulator transition 5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour deposition 6 have shed light on the crucial role of strain in the structural and electronic phase diagram of this material 7 , 8 , 9 , 10 , including evidence for a new M2 phase 11 , 12 , but the detailed physics of this material is still not fully understood. The transition temperature can be reduced by doping with tungsten 8 , 13 , but this process is not reversible. Here, we show that the metal–insulator transition in nanoscale beams of vanadium dioxide can be strongly modified by doping with atomic hydrogen 14 using the catalytic spillover method 15 . We also show that this process is completely reversible, and that the metal–insulator transition eventually vanishes when the doping exceeds a threshold value. Raman and conventional optical microscopy, electron diffraction and transmission electron microscopy provide evidence that the structure of the metallic post-hydrogenation state is similar to that of the rutile state. First-principles electronic structure calculations confirm that a distorted rutile structure is energetically favoured following hydrogenation, and also that such doping favours metallicity from both the Mott and Peierls perspectives. We anticipate that hydrogen doping will be a powerful tool for examining the metal–insulator transition and for engineering the properties of vanadium dioxide. The metal–insulator transition in vanadium dioxide can be reversibly suppressed to cryogenic temperatures by doping with atomic hydrogen.</description><subject>639/925/357/537</subject><subject>639/925/357/995</subject><subject>639/925/929/115</subject><subject>Chemistry and Materials Science</subject><subject>Electrons</subject><subject>Experiments</subject><subject>Gold</subject><subject>High temperature</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>letter</subject><subject>Light microscopy</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Silicon wafers</subject><subject>Single crystals</subject><subject>Temperature</subject><subject>Transition temperatures</subject><subject>Tungsten</subject><subject>Vanadium</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkD1PwzAQhi0EEqUwsltiTvBXYntEFVCkSl1gjpz4XLlK7BAniPLrSSlCTHfD8957ehC6pSSnhKv7EEyIOSOU5ZKcoQWVQmWc6-L8b1fyEl2ltCekYJqJBdquD3aIOwg4jab2rf8yo48BR4c7GE3b-gZ_mGCsnzpsffz0FrCfaR92LWTNcJhzLT4212C6dI0unGkT3PzOJXp7enxdrbPN9vll9bDJelqwMbOEUOANL7WtmXGMcGetqVmhCTjeKKFASMcEb0QDUoCRrGQFo5RTqaxxfInuTnf7Ib5PkMZqH6chzJUVJVRTrVVZzlR-olI_zA_D8J-qjtKqH2nVUVolCf8GhRBhkQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Wei, Jiang</creator><creator>Ji, Heng</creator><creator>Guo, Wenhua</creator><creator>Nevidomskyy, Andriy H.</creator><creator>Natelson, Douglas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120601</creationdate><title>Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams</title><author>Wei, Jiang ; Ji, Heng ; Guo, Wenhua ; Nevidomskyy, Andriy H. ; Natelson, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p152t-d001e3c369db2af203fddab2590ef3c848e47f243c4ce74ea726252113178daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/925/357/537</topic><topic>639/925/357/995</topic><topic>639/925/929/115</topic><topic>Chemistry and Materials Science</topic><topic>Electrons</topic><topic>Experiments</topic><topic>Gold</topic><topic>High temperature</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>letter</topic><topic>Light microscopy</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Silicon wafers</topic><topic>Single crystals</topic><topic>Temperature</topic><topic>Transition temperatures</topic><topic>Tungsten</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jiang</creatorcontrib><creatorcontrib>Ji, Heng</creatorcontrib><creatorcontrib>Guo, Wenhua</creatorcontrib><creatorcontrib>Nevidomskyy, Andriy H.</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jiang</au><au>Ji, Heng</au><au>Guo, Wenhua</au><au>Nevidomskyy, Andriy H.</au><au>Natelson, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>357</spage><epage>362</epage><pages>357-362</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Vanadium dioxide is a strongly correlated material 1 , 2 , 3 , 4 that undergoes a metal–insulator transition 5 from a high-temperature, rutile metal to a monoclinic insulating state at 67 °C. In recent years, experiments on single-crystal vanadium-dioxide nanowires grown by physical vapour deposition 6 have shed light on the crucial role of strain in the structural and electronic phase diagram of this material 7 , 8 , 9 , 10 , including evidence for a new M2 phase 11 , 12 , but the detailed physics of this material is still not fully understood. The transition temperature can be reduced by doping with tungsten 8 , 13 , but this process is not reversible. Here, we show that the metal–insulator transition in nanoscale beams of vanadium dioxide can be strongly modified by doping with atomic hydrogen 14 using the catalytic spillover method 15 . We also show that this process is completely reversible, and that the metal–insulator transition eventually vanishes when the doping exceeds a threshold value. Raman and conventional optical microscopy, electron diffraction and transmission electron microscopy provide evidence that the structure of the metallic post-hydrogenation state is similar to that of the rutile state. First-principles electronic structure calculations confirm that a distorted rutile structure is energetically favoured following hydrogenation, and also that such doping favours metallicity from both the Mott and Peierls perspectives. We anticipate that hydrogen doping will be a powerful tool for examining the metal–insulator transition and for engineering the properties of vanadium dioxide. The metal–insulator transition in vanadium dioxide can be reversibly suppressed to cryogenic temperatures by doping with atomic hydrogen.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nnano.2012.70</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2012-06, Vol.7 (6), p.357-362
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_1019199866
source SpringerLink Journals; Nature
subjects 639/925/357/537
639/925/357/995
639/925/929/115
Chemistry and Materials Science
Electrons
Experiments
Gold
High temperature
Hydrogen
Hydrogenation
letter
Light microscopy
Materials Science
Metals
Microscopy
Nanotechnology
Nanotechnology and Microengineering
Phase transitions
Physics
Silicon wafers
Single crystals
Temperature
Transition temperatures
Tungsten
Vanadium
title Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20stabilization%20of%20metallic%20vanadium%20dioxide%20in%20single-crystal%20nanobeams&rft.jtitle=Nature%20nanotechnology&rft.au=Wei,%20Jiang&rft.date=2012-06-01&rft.volume=7&rft.issue=6&rft.spage=357&rft.epage=362&rft.pages=357-362&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2012.70&rft_dat=%3Cproquest_sprin%3E2681186591%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019199866&rft_id=info:pmid/&rfr_iscdi=true