Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area

Changing lanes while having no information about the blind spot area can be dangerous. We propose a vision-based vehicle detection system for a lane changing assistance system to monitor the potential sedan vehicle in the blind-spot area. To serve our purpose, we select adequate features, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2012-06, Vol.13 (2), p.737-747
Hauptverfasser: Bin-Feng Lin, Yi-Ming Chan, Fu, Li-Chen, Pei-Yung Hsiao, Li-An Chuang, Shin-Shinh Huang, Min-Fang Lo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 2
container_start_page 737
container_title IEEE transactions on intelligent transportation systems
container_volume 13
creator Bin-Feng Lin
Yi-Ming Chan
Fu, Li-Chen
Pei-Yung Hsiao
Li-An Chuang
Shin-Shinh Huang
Min-Fang Lo
description Changing lanes while having no information about the blind spot area can be dangerous. We propose a vision-based vehicle detection system for a lane changing assistance system to monitor the potential sedan vehicle in the blind-spot area. To serve our purpose, we select adequate features, which are directly obtained from vehicle images, to detect possible vehicles in the blind-spot area. This is challenging due to the significant change in the view angle of a vehicle along with its location throughout the blind-spot area. To cope with this problem, we propose a method to combine two kinds of part-based features that are related to the characteristics of the vehicle, and we build multiple models based on different viewpoints of a vehicle. The location information of each feature is incorporated to help construct the detector and estimate the reasonable position of the presence of the vehicle. The experiments show that our system is reliable in detecting various sedan vehicles in the blind-spot area.
doi_str_mv 10.1109/TITS.2011.2182649
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1018464228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6145682</ieee_id><sourcerecordid>2677975631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-8ad309f1b5db2cece572e30bfe14ad9c19269acea8957ddc0d74806561b328043</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhhdRsFYfQLwEvHjZmskmafZYtdVCwUOrFw9Lmsy2W7bZNckefHu3tHgQBmYYvn8YviS5BToCoPnjar5ajhgFGDFQTPL8LBmAECqlFOT5YWY8zamgl8lVCLt-ywXAIPmau4gbr2PlNmTStqi9dgaJdpZM7QbJDHXsPAZSNp4s0WpHPnFbmRrJC0Y0sWocqRyJWyRPdeVsumybSCYe9XVyUeo64M2pD5OP2XT1_JYu3l_nz5NFangmYqq0zWhewlrYNTNoUIwZZnRdInBtcwM5k7k2qFUuxtYaasdcUSkkrDOmKM-GycPxbuub7w5DLPZVMFjX2mHThQIyKYCzvnr0_h-6azrv-u8KoKC45IypnoIjZXwTgseyaH211_6nh4qD7uKguzjoLk66-8zdMVMh4h8ve81SsewXnnt6Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018464228</pqid></control><display><type>article</type><title>Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area</title><source>IEEE Electronic Library (IEL)</source><creator>Bin-Feng Lin ; Yi-Ming Chan ; Fu, Li-Chen ; Pei-Yung Hsiao ; Li-An Chuang ; Shin-Shinh Huang ; Min-Fang Lo</creator><creatorcontrib>Bin-Feng Lin ; Yi-Ming Chan ; Fu, Li-Chen ; Pei-Yung Hsiao ; Li-An Chuang ; Shin-Shinh Huang ; Min-Fang Lo</creatorcontrib><description>Changing lanes while having no information about the blind spot area can be dangerous. We propose a vision-based vehicle detection system for a lane changing assistance system to monitor the potential sedan vehicle in the blind-spot area. To serve our purpose, we select adequate features, which are directly obtained from vehicle images, to detect possible vehicles in the blind-spot area. This is challenging due to the significant change in the view angle of a vehicle along with its location throughout the blind-spot area. To cope with this problem, we propose a method to combine two kinds of part-based features that are related to the characteristics of the vehicle, and we build multiple models based on different viewpoints of a vehicle. The location information of each feature is incorporated to help construct the detector and estimate the reasonable position of the presence of the vehicle. The experiments show that our system is reliable in detecting various sedan vehicles in the blind-spot area.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2011.2182649</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blind spot area ; Construction ; Dangerous ; Estimates ; Feature extraction ; feature integration ; Image edge detection ; Image segmentation ; Monitors ; Position (location) ; spatial relationship ; Training ; Vectors ; Vehicle detection ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2012-06, Vol.13 (2), p.737-747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-8ad309f1b5db2cece572e30bfe14ad9c19269acea8957ddc0d74806561b328043</citedby><cites>FETCH-LOGICAL-c435t-8ad309f1b5db2cece572e30bfe14ad9c19269acea8957ddc0d74806561b328043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6145682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6145682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin-Feng Lin</creatorcontrib><creatorcontrib>Yi-Ming Chan</creatorcontrib><creatorcontrib>Fu, Li-Chen</creatorcontrib><creatorcontrib>Pei-Yung Hsiao</creatorcontrib><creatorcontrib>Li-An Chuang</creatorcontrib><creatorcontrib>Shin-Shinh Huang</creatorcontrib><creatorcontrib>Min-Fang Lo</creatorcontrib><title>Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Changing lanes while having no information about the blind spot area can be dangerous. We propose a vision-based vehicle detection system for a lane changing assistance system to monitor the potential sedan vehicle in the blind-spot area. To serve our purpose, we select adequate features, which are directly obtained from vehicle images, to detect possible vehicles in the blind-spot area. This is challenging due to the significant change in the view angle of a vehicle along with its location throughout the blind-spot area. To cope with this problem, we propose a method to combine two kinds of part-based features that are related to the characteristics of the vehicle, and we build multiple models based on different viewpoints of a vehicle. The location information of each feature is incorporated to help construct the detector and estimate the reasonable position of the presence of the vehicle. The experiments show that our system is reliable in detecting various sedan vehicles in the blind-spot area.</description><subject>Blind spot area</subject><subject>Construction</subject><subject>Dangerous</subject><subject>Estimates</subject><subject>Feature extraction</subject><subject>feature integration</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Monitors</subject><subject>Position (location)</subject><subject>spatial relationship</subject><subject>Training</subject><subject>Vectors</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKAzEQhhdRsFYfQLwEvHjZmskmafZYtdVCwUOrFw9Lmsy2W7bZNckefHu3tHgQBmYYvn8YviS5BToCoPnjar5ajhgFGDFQTPL8LBmAECqlFOT5YWY8zamgl8lVCLt-ywXAIPmau4gbr2PlNmTStqi9dgaJdpZM7QbJDHXsPAZSNp4s0WpHPnFbmRrJC0Y0sWocqRyJWyRPdeVsumybSCYe9XVyUeo64M2pD5OP2XT1_JYu3l_nz5NFangmYqq0zWhewlrYNTNoUIwZZnRdInBtcwM5k7k2qFUuxtYaasdcUSkkrDOmKM-GycPxbuub7w5DLPZVMFjX2mHThQIyKYCzvnr0_h-6azrv-u8KoKC45IypnoIjZXwTgseyaH211_6nh4qD7uKguzjoLk66-8zdMVMh4h8ve81SsewXnnt6Xw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Bin-Feng Lin</creator><creator>Yi-Ming Chan</creator><creator>Fu, Li-Chen</creator><creator>Pei-Yung Hsiao</creator><creator>Li-An Chuang</creator><creator>Shin-Shinh Huang</creator><creator>Min-Fang Lo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120601</creationdate><title>Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area</title><author>Bin-Feng Lin ; Yi-Ming Chan ; Fu, Li-Chen ; Pei-Yung Hsiao ; Li-An Chuang ; Shin-Shinh Huang ; Min-Fang Lo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-8ad309f1b5db2cece572e30bfe14ad9c19269acea8957ddc0d74806561b328043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Blind spot area</topic><topic>Construction</topic><topic>Dangerous</topic><topic>Estimates</topic><topic>Feature extraction</topic><topic>feature integration</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Monitors</topic><topic>Position (location)</topic><topic>spatial relationship</topic><topic>Training</topic><topic>Vectors</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bin-Feng Lin</creatorcontrib><creatorcontrib>Yi-Ming Chan</creatorcontrib><creatorcontrib>Fu, Li-Chen</creatorcontrib><creatorcontrib>Pei-Yung Hsiao</creatorcontrib><creatorcontrib>Li-An Chuang</creatorcontrib><creatorcontrib>Shin-Shinh Huang</creatorcontrib><creatorcontrib>Min-Fang Lo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin-Feng Lin</au><au>Yi-Ming Chan</au><au>Fu, Li-Chen</au><au>Pei-Yung Hsiao</au><au>Li-An Chuang</au><au>Shin-Shinh Huang</au><au>Min-Fang Lo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>737</spage><epage>747</epage><pages>737-747</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Changing lanes while having no information about the blind spot area can be dangerous. We propose a vision-based vehicle detection system for a lane changing assistance system to monitor the potential sedan vehicle in the blind-spot area. To serve our purpose, we select adequate features, which are directly obtained from vehicle images, to detect possible vehicles in the blind-spot area. This is challenging due to the significant change in the view angle of a vehicle along with its location throughout the blind-spot area. To cope with this problem, we propose a method to combine two kinds of part-based features that are related to the characteristics of the vehicle, and we build multiple models based on different viewpoints of a vehicle. The location information of each feature is incorporated to help construct the detector and estimate the reasonable position of the presence of the vehicle. The experiments show that our system is reliable in detecting various sedan vehicles in the blind-spot area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2011.2182649</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2012-06, Vol.13 (2), p.737-747
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1018464228
source IEEE Electronic Library (IEL)
subjects Blind spot area
Construction
Dangerous
Estimates
Feature extraction
feature integration
Image edge detection
Image segmentation
Monitors
Position (location)
spatial relationship
Training
Vectors
Vehicle detection
Vehicles
title Integrating Appearance and Edge Features for Sedan Vehicle Detection in the Blind-Spot Area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Appearance%20and%20Edge%20Features%20for%20Sedan%20Vehicle%20Detection%20in%20the%20Blind-Spot%20Area&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Bin-Feng%20Lin&rft.date=2012-06-01&rft.volume=13&rft.issue=2&rft.spage=737&rft.epage=747&rft.pages=737-747&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2011.2182649&rft_dat=%3Cproquest_RIE%3E2677975631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018464228&rft_id=info:pmid/&rft_ieee_id=6145682&rfr_iscdi=true