Grammatical Evolution of Local Search Heuristics

Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2012-06, Vol.16 (3), p.406-417
Hauptverfasser: Burke, E. K., Hyde, M. R., Kendall, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 3
container_start_page 406
container_title IEEE transactions on evolutionary computation
container_volume 16
creator Burke, E. K.
Hyde, M. R.
Kendall, G.
description Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.
doi_str_mv 10.1109/TEVC.2011.2160401
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1017943859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6029980</ieee_id><sourcerecordid>2674934231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwERPCSOrNfyR6l1FYoeLCKt7DZ3WBK0tXdRPDfu6GlB08zzDzvMDxJco0wQwT5sFm8z2cEEGcEBTDAk2SCkmEGQMRp7KGQWZ4XH-fJRQhbAGQc5SSBpVddp_pGqzZd_Lh26Bu3S12drt04erXK6890ZQffhEiFy-SsVm2wV4c6Td6eFpv5Klu_LJ_nj-tMUy76jFllKlNBYa02ROba1DWXSipGlJRGckY4LQSh3Bgm0WheUUsrJY1CUomaTpP7_d0v774HG_qya4K2bat21g2hRKBICTCRR_T2H7p1g9_F7yKFuWS04DJSuKe0dyF4W5dfvumU_41QOTosR4fl6LA8OIyZu8NlFaKN2qudbsIxSARAzgseuZs911hrj2sBRMoC6B-FJXkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017943859</pqid></control><display><type>article</type><title>Grammatical Evolution of Local Search Heuristics</title><source>IEEE Electronic Library (IEL)</source><creator>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</creator><creatorcontrib>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</creatorcontrib><description>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2011.2160401</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bin packing ; Bioinformatics ; Construction ; Cutting ; Evolution ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Genetic programming ; Genetics ; Genomics ; Grammar ; grammatical evolution ; Heuristic ; Heuristic algorithms ; heuristics ; local search ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Production ; Programming ; Search problems ; Searching ; stock cutting</subject><ispartof>IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.406-417</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</citedby><cites>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6029980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6029980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26007585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, E. K.</creatorcontrib><creatorcontrib>Hyde, M. R.</creatorcontrib><creatorcontrib>Kendall, G.</creatorcontrib><title>Grammatical Evolution of Local Search Heuristics</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</description><subject>Applied sciences</subject><subject>Bin packing</subject><subject>Bioinformatics</subject><subject>Construction</subject><subject>Cutting</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic programming</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Grammar</subject><subject>grammatical evolution</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>heuristics</subject><subject>local search</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Production</subject><subject>Programming</subject><subject>Search problems</subject><subject>Searching</subject><subject>stock cutting</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwERPCSOrNfyR6l1FYoeLCKt7DZ3WBK0tXdRPDfu6GlB08zzDzvMDxJco0wQwT5sFm8z2cEEGcEBTDAk2SCkmEGQMRp7KGQWZ4XH-fJRQhbAGQc5SSBpVddp_pGqzZd_Lh26Bu3S12drt04erXK6890ZQffhEiFy-SsVm2wV4c6Td6eFpv5Klu_LJ_nj-tMUy76jFllKlNBYa02ROba1DWXSipGlJRGckY4LQSh3Bgm0WheUUsrJY1CUomaTpP7_d0v774HG_qya4K2bat21g2hRKBICTCRR_T2H7p1g9_F7yKFuWS04DJSuKe0dyF4W5dfvumU_41QOTosR4fl6LA8OIyZu8NlFaKN2qudbsIxSARAzgseuZs911hrj2sBRMoC6B-FJXkI</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Burke, E. K.</creator><creator>Hyde, M. R.</creator><creator>Kendall, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120601</creationdate><title>Grammatical Evolution of Local Search Heuristics</title><author>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bin packing</topic><topic>Bioinformatics</topic><topic>Construction</topic><topic>Cutting</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic programming</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Grammar</topic><topic>grammatical evolution</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>heuristics</topic><topic>local search</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Production</topic><topic>Programming</topic><topic>Search problems</topic><topic>Searching</topic><topic>stock cutting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, E. K.</creatorcontrib><creatorcontrib>Hyde, M. R.</creatorcontrib><creatorcontrib>Kendall, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burke, E. K.</au><au>Hyde, M. R.</au><au>Kendall, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grammatical Evolution of Local Search Heuristics</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>406</spage><epage>417</epage><pages>406-417</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2011.2160401</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.406-417
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_journals_1017943859
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bin packing
Bioinformatics
Construction
Cutting
Evolution
Exact sciences and technology
Flows in networks. Combinatorial problems
Genetic programming
Genetics
Genomics
Grammar
grammatical evolution
Heuristic
Heuristic algorithms
heuristics
local search
Mathematical models
Operational research and scientific management
Operational research. Management science
Production
Programming
Search problems
Searching
stock cutting
title Grammatical Evolution of Local Search Heuristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grammatical%20Evolution%20of%20Local%20Search%20Heuristics&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Burke,%20E.%20K.&rft.date=2012-06-01&rft.volume=16&rft.issue=3&rft.spage=406&rft.epage=417&rft.pages=406-417&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2011.2160401&rft_dat=%3Cproquest_RIE%3E2674934231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017943859&rft_id=info:pmid/&rft_ieee_id=6029980&rfr_iscdi=true