Grammatical Evolution of Local Search Heuristics
Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as loc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2012-06, Vol.16 (3), p.406-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 3 |
container_start_page | 406 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 16 |
creator | Burke, E. K. Hyde, M. R. Kendall, G. |
description | Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances. |
doi_str_mv | 10.1109/TEVC.2011.2160401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1017943859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6029980</ieee_id><sourcerecordid>2674934231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwERPCSOrNfyR6l1FYoeLCKt7DZ3WBK0tXdRPDfu6GlB08zzDzvMDxJco0wQwT5sFm8z2cEEGcEBTDAk2SCkmEGQMRp7KGQWZ4XH-fJRQhbAGQc5SSBpVddp_pGqzZd_Lh26Bu3S12drt04erXK6890ZQffhEiFy-SsVm2wV4c6Td6eFpv5Klu_LJ_nj-tMUy76jFllKlNBYa02ROba1DWXSipGlJRGckY4LQSh3Bgm0WheUUsrJY1CUomaTpP7_d0v774HG_qya4K2bat21g2hRKBICTCRR_T2H7p1g9_F7yKFuWS04DJSuKe0dyF4W5dfvumU_41QOTosR4fl6LA8OIyZu8NlFaKN2qudbsIxSARAzgseuZs911hrj2sBRMoC6B-FJXkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017943859</pqid></control><display><type>article</type><title>Grammatical Evolution of Local Search Heuristics</title><source>IEEE Electronic Library (IEL)</source><creator>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</creator><creatorcontrib>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</creatorcontrib><description>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2011.2160401</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bin packing ; Bioinformatics ; Construction ; Cutting ; Evolution ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Genetic programming ; Genetics ; Genomics ; Grammar ; grammatical evolution ; Heuristic ; Heuristic algorithms ; heuristics ; local search ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Production ; Programming ; Search problems ; Searching ; stock cutting</subject><ispartof>IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.406-417</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</citedby><cites>FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6029980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6029980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26007585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, E. K.</creatorcontrib><creatorcontrib>Hyde, M. R.</creatorcontrib><creatorcontrib>Kendall, G.</creatorcontrib><title>Grammatical Evolution of Local Search Heuristics</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</description><subject>Applied sciences</subject><subject>Bin packing</subject><subject>Bioinformatics</subject><subject>Construction</subject><subject>Cutting</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic programming</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Grammar</subject><subject>grammatical evolution</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>heuristics</subject><subject>local search</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Production</subject><subject>Programming</subject><subject>Search problems</subject><subject>Searching</subject><subject>stock cutting</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwERPCSOrNfyR6l1FYoeLCKt7DZ3WBK0tXdRPDfu6GlB08zzDzvMDxJco0wQwT5sFm8z2cEEGcEBTDAk2SCkmEGQMRp7KGQWZ4XH-fJRQhbAGQc5SSBpVddp_pGqzZd_Lh26Bu3S12drt04erXK6890ZQffhEiFy-SsVm2wV4c6Td6eFpv5Klu_LJ_nj-tMUy76jFllKlNBYa02ROba1DWXSipGlJRGckY4LQSh3Bgm0WheUUsrJY1CUomaTpP7_d0v774HG_qya4K2bat21g2hRKBICTCRR_T2H7p1g9_F7yKFuWS04DJSuKe0dyF4W5dfvumU_41QOTosR4fl6LA8OIyZu8NlFaKN2qudbsIxSARAzgseuZs911hrj2sBRMoC6B-FJXkI</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Burke, E. K.</creator><creator>Hyde, M. R.</creator><creator>Kendall, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120601</creationdate><title>Grammatical Evolution of Local Search Heuristics</title><author>Burke, E. K. ; Hyde, M. R. ; Kendall, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4eadbdb08eecd297cdff59a9a42a99d95425386235dd491dc5b3e3ba9da12b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bin packing</topic><topic>Bioinformatics</topic><topic>Construction</topic><topic>Cutting</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic programming</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Grammar</topic><topic>grammatical evolution</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>heuristics</topic><topic>local search</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Production</topic><topic>Programming</topic><topic>Search problems</topic><topic>Searching</topic><topic>stock cutting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, E. K.</creatorcontrib><creatorcontrib>Hyde, M. R.</creatorcontrib><creatorcontrib>Kendall, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burke, E. K.</au><au>Hyde, M. R.</au><au>Kendall, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grammatical Evolution of Local Search Heuristics</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>406</spage><epage>417</epage><pages>406-417</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Genetic programming approaches have been employed in the literature to automatically design constructive heuristics for cutting and packing problems. These heuristics obtain results superior to human-created constructive heuristics, but they do not generally obtain results of the same quality as local search heuristics, which start from an initial solution and iteratively improve it. If local search heuristics can be successfully designed through evolution, in addition to a constructive heuristic which initializes the solution, then the quality of results which can be obtained by automatically generated algorithms can be significantly improved. This paper presents a grammatical evolution methodology which automatically designs good quality local search heuristics that maintain their performance on new problem instances.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2011.2160401</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2012-06, Vol.16 (3), p.406-417 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_journals_1017943859 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bin packing Bioinformatics Construction Cutting Evolution Exact sciences and technology Flows in networks. Combinatorial problems Genetic programming Genetics Genomics Grammar grammatical evolution Heuristic Heuristic algorithms heuristics local search Mathematical models Operational research and scientific management Operational research. Management science Production Programming Search problems Searching stock cutting |
title | Grammatical Evolution of Local Search Heuristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grammatical%20Evolution%20of%20Local%20Search%20Heuristics&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Burke,%20E.%20K.&rft.date=2012-06-01&rft.volume=16&rft.issue=3&rft.spage=406&rft.epage=417&rft.pages=406-417&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2011.2160401&rft_dat=%3Cproquest_RIE%3E2674934231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017943859&rft_id=info:pmid/&rft_ieee_id=6029980&rfr_iscdi=true |