Dynamic asset beta measurement

The recent advent of high-frequency data and advances in financial econometrics allow market participants to evaluate the accuracy of different beta (systematic risk) measurements. Benchmarking against the monthly realized beta formed by 30-minute data, we compare the popular Fama-MacBeth betas, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied financial economics 2012-10, Vol.22 (19), p.1655-1664
Hauptverfasser: Chen, Brandon, Reeves, Jonathan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1664
container_issue 19
container_start_page 1655
container_title Applied financial economics
container_volume 22
creator Chen, Brandon
Reeves, Jonathan J.
description The recent advent of high-frequency data and advances in financial econometrics allow market participants to evaluate the accuracy of different beta (systematic risk) measurements. Benchmarking against the monthly realized beta formed by 30-minute data, we compare the popular Fama-MacBeth betas, the monthly realized betas formed by daily returns and our Hodrick-Prescott filtered betas, with the smoothing parameter, λ, set to 100. We find our filtered betas reduce the measurement error substantially relative to other beta measures. These results enable market participants to measure betas with greater precision and efficiency even with only daily returns in hand.
doi_str_mv 10.1080/09603107.2012.674203
format Article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_journals_1011301029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1267028952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-2de7a321dd5dd92b568b4197e9f8bf04c9ffbff8f25426ec147b02d5ca0d37553</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-A5EBN2463ptX25XI-IQRN7oOaZpgh75MOsr8e1OqLly4uA8u3zlcDiGnCEuEDC4hl8AQ0iUFpEuZcgpsj8yQS5lwBmKfzEYkGZlDchTCBiKYSZyRs5tdq5vKLHQIdlgUdtCLxuqw9bax7XBMDpyugz35nnPyenf7snpI1s_3j6vrdWI4pkNCS5tqRrEsRVnmtBAyKzjmqc1dVjjgJneucC5zVHAqrUGeFkBLYTSULBWCzcnF5Nv77n1rw6CaKhhb17q13TYopDIFmuWCRvT8D7rptr6N3ykERAYINI8UnyjjuxC8dar3VaP9LkJqDE39hKbG0NQUWpQ9TTJve2t-NYN2undVvHwopimNbTcuo5LpKhbmsfXjIoVQKCVXb0MT_a4mv6p1nW_0Z-frMtrt6s47r1tTBcX-_egLmGqKMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011301029</pqid></control><display><type>article</type><title>Dynamic asset beta measurement</title><source>RePEc</source><source>Business Source Complete</source><creator>Chen, Brandon ; Reeves, Jonathan J.</creator><creatorcontrib>Chen, Brandon ; Reeves, Jonathan J.</creatorcontrib><description>The recent advent of high-frequency data and advances in financial econometrics allow market participants to evaluate the accuracy of different beta (systematic risk) measurements. Benchmarking against the monthly realized beta formed by 30-minute data, we compare the popular Fama-MacBeth betas, the monthly realized betas formed by daily returns and our Hodrick-Prescott filtered betas, with the smoothing parameter, λ, set to 100. We find our filtered betas reduce the measurement error substantially relative to other beta measures. These results enable market participants to measure betas with greater precision and efficiency even with only daily returns in hand.</description><identifier>ISSN: 0960-3107</identifier><identifier>EISSN: 1466-4305</identifier><identifier>DOI: 10.1080/09603107.2012.674203</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Benchmarking ; Benchmarks ; Capital market ; CAPM beta ; Comparative studies ; Econometrics ; Economic efficiency ; Market economy ; Measurement errors ; Rates of return ; realized beta ; Returns to scale ; Risk assessment ; systematic risk ; time-varying risk</subject><ispartof>Applied financial economics, 2012-10, Vol.22 (19), p.1655-1664</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Routledge 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-2de7a321dd5dd92b568b4197e9f8bf04c9ffbff8f25426ec147b02d5ca0d37553</citedby><cites>FETCH-LOGICAL-c417t-2de7a321dd5dd92b568b4197e9f8bf04c9ffbff8f25426ec147b02d5ca0d37553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3994,27901,27902</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafapfiec/v_3a22_3ay_3a2012_3ai_3a19_3ap_3a1655-1664.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Brandon</creatorcontrib><creatorcontrib>Reeves, Jonathan J.</creatorcontrib><title>Dynamic asset beta measurement</title><title>Applied financial economics</title><description>The recent advent of high-frequency data and advances in financial econometrics allow market participants to evaluate the accuracy of different beta (systematic risk) measurements. Benchmarking against the monthly realized beta formed by 30-minute data, we compare the popular Fama-MacBeth betas, the monthly realized betas formed by daily returns and our Hodrick-Prescott filtered betas, with the smoothing parameter, λ, set to 100. We find our filtered betas reduce the measurement error substantially relative to other beta measures. These results enable market participants to measure betas with greater precision and efficiency even with only daily returns in hand.</description><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Capital market</subject><subject>CAPM beta</subject><subject>Comparative studies</subject><subject>Econometrics</subject><subject>Economic efficiency</subject><subject>Market economy</subject><subject>Measurement errors</subject><subject>Rates of return</subject><subject>realized beta</subject><subject>Returns to scale</subject><subject>Risk assessment</subject><subject>systematic risk</subject><subject>time-varying risk</subject><issn>0960-3107</issn><issn>1466-4305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-A5EBN2463ptX25XI-IQRN7oOaZpgh75MOsr8e1OqLly4uA8u3zlcDiGnCEuEDC4hl8AQ0iUFpEuZcgpsj8yQS5lwBmKfzEYkGZlDchTCBiKYSZyRs5tdq5vKLHQIdlgUdtCLxuqw9bax7XBMDpyugz35nnPyenf7snpI1s_3j6vrdWI4pkNCS5tqRrEsRVnmtBAyKzjmqc1dVjjgJneucC5zVHAqrUGeFkBLYTSULBWCzcnF5Nv77n1rw6CaKhhb17q13TYopDIFmuWCRvT8D7rptr6N3ykERAYINI8UnyjjuxC8dar3VaP9LkJqDE39hKbG0NQUWpQ9TTJve2t-NYN2undVvHwopimNbTcuo5LpKhbmsfXjIoVQKCVXb0MT_a4mv6p1nW_0Z-frMtrt6s47r1tTBcX-_egLmGqKMQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Chen, Brandon</creator><creator>Reeves, Jonathan J.</creator><general>Routledge</general><general>Taylor and Francis Journals</general><general>Routledge, Taylor &amp; Francis Group</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201210</creationdate><title>Dynamic asset beta measurement</title><author>Chen, Brandon ; Reeves, Jonathan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-2de7a321dd5dd92b568b4197e9f8bf04c9ffbff8f25426ec147b02d5ca0d37553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Capital market</topic><topic>CAPM beta</topic><topic>Comparative studies</topic><topic>Econometrics</topic><topic>Economic efficiency</topic><topic>Market economy</topic><topic>Measurement errors</topic><topic>Rates of return</topic><topic>realized beta</topic><topic>Returns to scale</topic><topic>Risk assessment</topic><topic>systematic risk</topic><topic>time-varying risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Brandon</creatorcontrib><creatorcontrib>Reeves, Jonathan J.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied financial economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Brandon</au><au>Reeves, Jonathan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic asset beta measurement</atitle><jtitle>Applied financial economics</jtitle><date>2012-10</date><risdate>2012</risdate><volume>22</volume><issue>19</issue><spage>1655</spage><epage>1664</epage><pages>1655-1664</pages><issn>0960-3107</issn><eissn>1466-4305</eissn><abstract>The recent advent of high-frequency data and advances in financial econometrics allow market participants to evaluate the accuracy of different beta (systematic risk) measurements. Benchmarking against the monthly realized beta formed by 30-minute data, we compare the popular Fama-MacBeth betas, the monthly realized betas formed by daily returns and our Hodrick-Prescott filtered betas, with the smoothing parameter, λ, set to 100. We find our filtered betas reduce the measurement error substantially relative to other beta measures. These results enable market participants to measure betas with greater precision and efficiency even with only daily returns in hand.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/09603107.2012.674203</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3107
ispartof Applied financial economics, 2012-10, Vol.22 (19), p.1655-1664
issn 0960-3107
1466-4305
language eng
recordid cdi_proquest_journals_1011301029
source RePEc; Business Source Complete
subjects Benchmarking
Benchmarks
Capital market
CAPM beta
Comparative studies
Econometrics
Economic efficiency
Market economy
Measurement errors
Rates of return
realized beta
Returns to scale
Risk assessment
systematic risk
time-varying risk
title Dynamic asset beta measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20asset%20beta%20measurement&rft.jtitle=Applied%20financial%20economics&rft.au=Chen,%20Brandon&rft.date=2012-10&rft.volume=22&rft.issue=19&rft.spage=1655&rft.epage=1664&rft.pages=1655-1664&rft.issn=0960-3107&rft.eissn=1466-4305&rft_id=info:doi/10.1080/09603107.2012.674203&rft_dat=%3Cproquest_repec%3E1267028952%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011301029&rft_id=info:pmid/&rfr_iscdi=true