On model-free conditional coordinate tests for regressions
Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference function...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2012-08, Vol.109, p.61-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | Journal of multivariate analysis |
container_volume | 109 |
creator | Yu, Zhou Zhu, Lixing Wen, Xuerong Meggie |
description | Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests. |
doi_str_mv | 10.1016/j.jmva.2012.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1011300292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X12000383</els_id><sourcerecordid>2652903861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwuet06y2W5WvEjxo1DoRcFbSLMTzdJuarIt9N87a8WjMC8TJu8NL4-xaw4TDnx6207azd5MBHAxASqQJ2zEoS7zSsjilI1oUuWirN_P2UVKLQDnZSVH7G7ZZZvQ4Dp3ETGzoWt870Nn1nQPsfGd6THrMfUpcyFmET8ipkSMdMnOnFknvPrtY_b29Pg6e8kXy-f57GGRW1moPkelTCmrsgRljbF8imDqskLrbCErdDVI4Rq-omdOs5VToApnuFESQammGLOb495tDF87cqLbsIvkMGn6Oy8ARC2IJY4sG0NKEZ3eRr8x8UCkgTfVrR4y0kNGGqhAkmh-FEXcov1TIOJA7Yze68JQjHQeCD_SwniCJWwJU64roT_7De26P-5CymLvMepkPXYWGx_R9roJ_j8r32seiRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011300292</pqid></control><display><type>article</type><title>On model-free conditional coordinate tests for regressions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</creator><creatorcontrib>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</creatorcontrib><description>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2012.02.004</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic methods ; Conditional coordinate test ; Conditional coordinate test Sufficient dimension reduction Sliced inverse regression ; Eigenvalues ; Estimating techniques ; Hypotheses ; Mathematical models ; Regression analysis ; Sliced inverse regression ; Studies ; Sufficient dimension reduction</subject><ispartof>Journal of multivariate analysis, 2012-08, Vol.109, p.61-72</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright Taylor & Francis Group Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</citedby><cites>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X12000383$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a109_3ay_3a2012_3ai_3ac_3ap_3a61-72.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><creatorcontrib>Wen, Xuerong Meggie</creatorcontrib><title>On model-free conditional coordinate tests for regressions</title><title>Journal of multivariate analysis</title><description>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</description><subject>Asymptotic methods</subject><subject>Conditional coordinate test</subject><subject>Conditional coordinate test Sufficient dimension reduction Sliced inverse regression</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Hypotheses</subject><subject>Mathematical models</subject><subject>Regression analysis</subject><subject>Sliced inverse regression</subject><subject>Studies</subject><subject>Sufficient dimension reduction</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwuet06y2W5WvEjxo1DoRcFbSLMTzdJuarIt9N87a8WjMC8TJu8NL4-xaw4TDnx6207azd5MBHAxASqQJ2zEoS7zSsjilI1oUuWirN_P2UVKLQDnZSVH7G7ZZZvQ4Dp3ETGzoWt870Nn1nQPsfGd6THrMfUpcyFmET8ipkSMdMnOnFknvPrtY_b29Pg6e8kXy-f57GGRW1moPkelTCmrsgRljbF8imDqskLrbCErdDVI4Rq-omdOs5VToApnuFESQammGLOb495tDF87cqLbsIvkMGn6Oy8ARC2IJY4sG0NKEZ3eRr8x8UCkgTfVrR4y0kNGGqhAkmh-FEXcov1TIOJA7Yze68JQjHQeCD_SwniCJWwJU64roT_7De26P-5CymLvMepkPXYWGx_R9roJ_j8r32seiRk</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Yu, Zhou</creator><creator>Zhu, Lixing</creator><creator>Wen, Xuerong Meggie</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20120801</creationdate><title>On model-free conditional coordinate tests for regressions</title><author>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic methods</topic><topic>Conditional coordinate test</topic><topic>Conditional coordinate test Sufficient dimension reduction Sliced inverse regression</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Hypotheses</topic><topic>Mathematical models</topic><topic>Regression analysis</topic><topic>Sliced inverse regression</topic><topic>Studies</topic><topic>Sufficient dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><creatorcontrib>Wen, Xuerong Meggie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhou</au><au>Zhu, Lixing</au><au>Wen, Xuerong Meggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On model-free conditional coordinate tests for regressions</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>109</volume><spage>61</spage><epage>72</epage><pages>61-72</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2012.02.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2012-08, Vol.109, p.61-72 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_1011300292 |
source | RePEc; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic methods Conditional coordinate test Conditional coordinate test Sufficient dimension reduction Sliced inverse regression Eigenvalues Estimating techniques Hypotheses Mathematical models Regression analysis Sliced inverse regression Studies Sufficient dimension reduction |
title | On model-free conditional coordinate tests for regressions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20model-free%20conditional%20coordinate%20tests%20for%20regressions&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Yu,%20Zhou&rft.date=2012-08-01&rft.volume=109&rft.spage=61&rft.epage=72&rft.pages=61-72&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2012.02.004&rft_dat=%3Cproquest_cross%3E2652903861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011300292&rft_id=info:pmid/&rft_els_id=S0047259X12000383&rfr_iscdi=true |