On model-free conditional coordinate tests for regressions

Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2012-08, Vol.109, p.61-72
Hauptverfasser: Yu, Zhou, Zhu, Lixing, Wen, Xuerong Meggie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 61
container_title Journal of multivariate analysis
container_volume 109
creator Yu, Zhou
Zhu, Lixing
Wen, Xuerong Meggie
description Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.
doi_str_mv 10.1016/j.jmva.2012.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1011300292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X12000383</els_id><sourcerecordid>2652903861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwuet06y2W5WvEjxo1DoRcFbSLMTzdJuarIt9N87a8WjMC8TJu8NL4-xaw4TDnx6207azd5MBHAxASqQJ2zEoS7zSsjilI1oUuWirN_P2UVKLQDnZSVH7G7ZZZvQ4Dp3ETGzoWt870Nn1nQPsfGd6THrMfUpcyFmET8ipkSMdMnOnFknvPrtY_b29Pg6e8kXy-f57GGRW1moPkelTCmrsgRljbF8imDqskLrbCErdDVI4Rq-omdOs5VToApnuFESQammGLOb495tDF87cqLbsIvkMGn6Oy8ARC2IJY4sG0NKEZ3eRr8x8UCkgTfVrR4y0kNGGqhAkmh-FEXcov1TIOJA7Yze68JQjHQeCD_SwniCJWwJU64roT_7De26P-5CymLvMepkPXYWGx_R9roJ_j8r32seiRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011300292</pqid></control><display><type>article</type><title>On model-free conditional coordinate tests for regressions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</creator><creatorcontrib>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</creatorcontrib><description>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2012.02.004</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic methods ; Conditional coordinate test ; Conditional coordinate test Sufficient dimension reduction Sliced inverse regression ; Eigenvalues ; Estimating techniques ; Hypotheses ; Mathematical models ; Regression analysis ; Sliced inverse regression ; Studies ; Sufficient dimension reduction</subject><ispartof>Journal of multivariate analysis, 2012-08, Vol.109, p.61-72</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</citedby><cites>FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0047259X12000383$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a109_3ay_3a2012_3ai_3ac_3ap_3a61-72.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><creatorcontrib>Wen, Xuerong Meggie</creatorcontrib><title>On model-free conditional coordinate tests for regressions</title><title>Journal of multivariate analysis</title><description>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</description><subject>Asymptotic methods</subject><subject>Conditional coordinate test</subject><subject>Conditional coordinate test Sufficient dimension reduction Sliced inverse regression</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Hypotheses</subject><subject>Mathematical models</subject><subject>Regression analysis</subject><subject>Sliced inverse regression</subject><subject>Studies</subject><subject>Sufficient dimension reduction</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwuet06y2W5WvEjxo1DoRcFbSLMTzdJuarIt9N87a8WjMC8TJu8NL4-xaw4TDnx6207azd5MBHAxASqQJ2zEoS7zSsjilI1oUuWirN_P2UVKLQDnZSVH7G7ZZZvQ4Dp3ETGzoWt870Nn1nQPsfGd6THrMfUpcyFmET8ipkSMdMnOnFknvPrtY_b29Pg6e8kXy-f57GGRW1moPkelTCmrsgRljbF8imDqskLrbCErdDVI4Rq-omdOs5VToApnuFESQammGLOb495tDF87cqLbsIvkMGn6Oy8ARC2IJY4sG0NKEZ3eRr8x8UCkgTfVrR4y0kNGGqhAkmh-FEXcov1TIOJA7Yze68JQjHQeCD_SwniCJWwJU64roT_7De26P-5CymLvMepkPXYWGx_R9roJ_j8r32seiRk</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Yu, Zhou</creator><creator>Zhu, Lixing</creator><creator>Wen, Xuerong Meggie</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20120801</creationdate><title>On model-free conditional coordinate tests for regressions</title><author>Yu, Zhou ; Zhu, Lixing ; Wen, Xuerong Meggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e88a5475508caac16e0a957ecfc347ef9042fd1b08c1cfcbf8083fa1a84e088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic methods</topic><topic>Conditional coordinate test</topic><topic>Conditional coordinate test Sufficient dimension reduction Sliced inverse regression</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Hypotheses</topic><topic>Mathematical models</topic><topic>Regression analysis</topic><topic>Sliced inverse regression</topic><topic>Studies</topic><topic>Sufficient dimension reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhou</creatorcontrib><creatorcontrib>Zhu, Lixing</creatorcontrib><creatorcontrib>Wen, Xuerong Meggie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhou</au><au>Zhu, Lixing</au><au>Wen, Xuerong Meggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On model-free conditional coordinate tests for regressions</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>109</volume><spage>61</spage><epage>72</epage><pages>61-72</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the sliced average variance estimation (Cook and Weisberg (1991) [9]). In this article, we develop two new model-free tests of the conditional predictor hypothesis. Moreover, our proposed test statistics can be adapted to commonly used sufficient dimension reduction methods of eigendecomposition type. We derive the asymptotic null distributions of the two test statistics and conduct simulation studies to examine the performances of the tests.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2012.02.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2012-08, Vol.109, p.61-72
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1011300292
source RePEc; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Asymptotic methods
Conditional coordinate test
Conditional coordinate test Sufficient dimension reduction Sliced inverse regression
Eigenvalues
Estimating techniques
Hypotheses
Mathematical models
Regression analysis
Sliced inverse regression
Studies
Sufficient dimension reduction
title On model-free conditional coordinate tests for regressions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20model-free%20conditional%20coordinate%20tests%20for%20regressions&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Yu,%20Zhou&rft.date=2012-08-01&rft.volume=109&rft.spage=61&rft.epage=72&rft.pages=61-72&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2012.02.004&rft_dat=%3Cproquest_cross%3E2652903861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011300292&rft_id=info:pmid/&rft_els_id=S0047259X12000383&rfr_iscdi=true