MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION

The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E(v): = \int_\Omega {{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2012-01, Vol.50 (2), p.522-543
Hauptverfasser: CARSTENSEN, CARSTEN, GÜNTHER, DAVID, RABUS, HELLA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 2
container_start_page 522
container_title SIAM journal on numerical analysis
container_volume 50
creator CARSTENSEN, CARSTEN
GÜNTHER, DAVID
RABUS, HELLA
description The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E(v): = \int_\Omega {{\varphi _0}} (|\nabla v|)dx - \int_\Omega {fvdx} $ for $v \in V: = H_0^1\left( \Omega \right)$ with possibly multiple primal solutions u, but with unique stress $\sigma : = \varphi _0^1\left( {|\nabla u|} \right)$ sign ∇u. The mixed finite element method is motivated by the smoothness of the stress variable $\sigma \in H_{loc}^1\left( {\Omega ;{\mathbb{R}^2}} \right)$ , while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.
doi_str_mv 10.1137/100806837
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1009911742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41582748</jstor_id><sourcerecordid>41582748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-8df09405e6750677fc9a59c0bdacb8f4de95b8c6d7447ea265b55099b570af473</originalsourceid><addsrcrecordid>eNo90M9LwzAUB_AgCs7pwT9ACHjyUH1pkyY51i3bAm0zSh3TS-lPcKjdmu3gf290slN4eZ_3HnwRuiXwSEjAnwiAgFAE_AyNCEjmccLhHI0AgtAj1JeX6MraDbhakGCEqkSv1RTPdKpzhVWsEpXmOFH5wrhfk-EIT9VcpSqLXH9i0pVa41WU6SjXJo1ivMzMs5vCs8wkODdLE5v5KzbLXCf67Q9do4uu_LDtzf87Ri8zlU8WnpN6EsVe7XO590TTgaTA2pAzCDnvalkyWUPVlHUlOtq0klWiDhtOKW9LP2QVYyBlxTiUHeXBGN0f926Hfndo7b7Y9Ifhy50sXCpSEsKp79TDUdVDb-3QdsV2eP8sh2-Hit8Ii1OEzt4d7cbu--EEKWHC51QEP6dNYyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009911742</pqid></control><display><type>article</type><title>MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>CARSTENSEN, CARSTEN ; GÜNTHER, DAVID ; RABUS, HELLA</creator><creatorcontrib>CARSTENSEN, CARSTEN ; GÜNTHER, DAVID ; RABUS, HELLA</creatorcontrib><description>The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E(v): = \int_\Omega {{\varphi _0}} (|\nabla v|)dx - \int_\Omega {fvdx} $ for $v \in V: = H_0^1\left( \Omega \right)$ with possibly multiple primal solutions u, but with unique stress $\sigma : = \varphi _0^1\left( {|\nabla u|} \right)$ sign ∇u. The mixed finite element method is motivated by the smoothness of the stress variable $\sigma \in H_{loc}^1\left( {\Omega ;{\mathbb{R}^2}} \right)$ , while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/100806837</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>A posteriori knowledge ; Applied mathematics ; Convexity ; Curl ; Design optimization ; Error analysis ; Estimators ; Finite element analysis ; Finite element method ; Flux density ; Material concentration ; Mathematical functions ; Variables</subject><ispartof>SIAM journal on numerical analysis, 2012-01, Vol.50 (2), p.522-543</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2012 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-8df09405e6750677fc9a59c0bdacb8f4de95b8c6d7447ea265b55099b570af473</citedby><cites>FETCH-LOGICAL-c279t-8df09405e6750677fc9a59c0bdacb8f4de95b8c6d7447ea265b55099b570af473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41582748$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41582748$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>CARSTENSEN, CARSTEN</creatorcontrib><creatorcontrib>GÜNTHER, DAVID</creatorcontrib><creatorcontrib>RABUS, HELLA</creatorcontrib><title>MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION</title><title>SIAM journal on numerical analysis</title><description>The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E(v): = \int_\Omega {{\varphi _0}} (|\nabla v|)dx - \int_\Omega {fvdx} $ for $v \in V: = H_0^1\left( \Omega \right)$ with possibly multiple primal solutions u, but with unique stress $\sigma : = \varphi _0^1\left( {|\nabla u|} \right)$ sign ∇u. The mixed finite element method is motivated by the smoothness of the stress variable $\sigma \in H_{loc}^1\left( {\Omega ;{\mathbb{R}^2}} \right)$ , while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.</description><subject>A posteriori knowledge</subject><subject>Applied mathematics</subject><subject>Convexity</subject><subject>Curl</subject><subject>Design optimization</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Material concentration</subject><subject>Mathematical functions</subject><subject>Variables</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90M9LwzAUB_AgCs7pwT9ACHjyUH1pkyY51i3bAm0zSh3TS-lPcKjdmu3gf290slN4eZ_3HnwRuiXwSEjAnwiAgFAE_AyNCEjmccLhHI0AgtAj1JeX6MraDbhakGCEqkSv1RTPdKpzhVWsEpXmOFH5wrhfk-EIT9VcpSqLXH9i0pVa41WU6SjXJo1ivMzMs5vCs8wkODdLE5v5KzbLXCf67Q9do4uu_LDtzf87Ri8zlU8WnpN6EsVe7XO590TTgaTA2pAzCDnvalkyWUPVlHUlOtq0klWiDhtOKW9LP2QVYyBlxTiUHeXBGN0f926Hfndo7b7Y9Ifhy50sXCpSEsKp79TDUdVDb-3QdsV2eP8sh2-Hit8Ii1OEzt4d7cbu--EEKWHC51QEP6dNYyU</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>CARSTENSEN, CARSTEN</creator><creator>GÜNTHER, DAVID</creator><creator>RABUS, HELLA</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION</title><author>CARSTENSEN, CARSTEN ; GÜNTHER, DAVID ; RABUS, HELLA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-8df09405e6750677fc9a59c0bdacb8f4de95b8c6d7447ea265b55099b570af473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A posteriori knowledge</topic><topic>Applied mathematics</topic><topic>Convexity</topic><topic>Curl</topic><topic>Design optimization</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Material concentration</topic><topic>Mathematical functions</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARSTENSEN, CARSTEN</creatorcontrib><creatorcontrib>GÜNTHER, DAVID</creatorcontrib><creatorcontrib>RABUS, HELLA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARSTENSEN, CARSTEN</au><au>GÜNTHER, DAVID</au><au>RABUS, HELLA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>50</volume><issue>2</issue><spage>522</spage><epage>543</epage><pages>522-543</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>The optimal design task of this paper seeks the distribution of two materials of prescribed amounts for maximal torsion stiffness of an infinite bar of a given cross section. This example of relaxation in topology optimization leads to a degenerate convex minimization problem $E(v): = \int_\Omega {{\varphi _0}} (|\nabla v|)dx - \int_\Omega {fvdx} $ for $v \in V: = H_0^1\left( \Omega \right)$ with possibly multiple primal solutions u, but with unique stress $\sigma : = \varphi _0^1\left( {|\nabla u|} \right)$ sign ∇u. The mixed finite element method is motivated by the smoothness of the stress variable $\sigma \in H_{loc}^1\left( {\Omega ;{\mathbb{R}^2}} \right)$ , while the primal variables are uncontrollable and possibly nonunique. The corresponding nonlinear mixed finite element method is introduced, analyzed, and implemented. The striking result of this paper is a sharp a posteriori error estimation in the dual formulation, while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap. An empirical comparison of that primal formulation with the new mixed discretization schemes is intended for uniform and adaptive mesh refinements.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100806837</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2012-01, Vol.50 (2), p.522-543
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_1009911742
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects A posteriori knowledge
Applied mathematics
Convexity
Curl
Design optimization
Error analysis
Estimators
Finite element analysis
Finite element method
Flux density
Material concentration
Mathematical functions
Variables
title MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIXED%20FINITE%20ELEMENT%20METHOD%20FOR%20A%20DEGENERATE%20CONVEX%20VARIATIONAL%20PROBLEM%20FROM%20TOPOLOGY%20OPTIMIZATION&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CARSTENSEN,%20CARSTEN&rft.date=2012-01-01&rft.volume=50&rft.issue=2&rft.spage=522&rft.epage=543&rft.pages=522-543&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/100806837&rft_dat=%3Cjstor_proqu%3E41582748%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009911742&rft_id=info:pmid/&rft_jstor_id=41582748&rfr_iscdi=true