DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger

A DSP-based probabilistic fuzzy neural network (PFNN) controller to control a two-stage ac-dc charger is pro- posed in this study. The charger is composed of an ac-dc boost converter with power factor correction and a phase-shift full- bridge dc-dc converter. Moreover, the designed charger adopts a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2012-08, Vol.27 (8), p.3782-3794
Hauptverfasser: LIN, Faa-Jeng, HUANG, Ming-Shi, YEH, Po-Yi, TSAI, Han-Chang, KUAN, Chi-Hsuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3794
container_issue 8
container_start_page 3782
container_title IEEE transactions on power electronics
container_volume 27
creator LIN, Faa-Jeng
HUANG, Ming-Shi
YEH, Po-Yi
TSAI, Han-Chang
KUAN, Chi-Hsuan
description A DSP-based probabilistic fuzzy neural network (PFNN) controller to control a two-stage ac-dc charger is pro- posed in this study. The charger is composed of an ac-dc boost converter with power factor correction and a phase-shift full- bridge dc-dc converter. Moreover, the designed charger adopts a constant-current and constant-voltage (CC-CV) charging strategy to charge lithium-ion battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is pro- posed to replace the traditional proportional-integral controller. Furthermore, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. In addition, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by experimental results.
doi_str_mv 10.1109/TPEL.2012.2187073
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1009656405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6148286</ieee_id><sourcerecordid>2644475381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5374c8504079e6a053537941803eff0aec4e7ab49be633a848f7d53b52a0772f3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsEY_gHgJiMfU2ezfHG1ttRBswXoOm3RXU2O27iZI--nd0tLLPJh582b4IXSLYYgxZI_LxSQfpoDTYYqlAEHO0ABnFCeAQZyjAUjJEpll5BJdeb8GwJQBHqD58_siGSmvV_HC2VKVdVP7rq7iab_bbeM33TvVBOn-rPuOx7btnG1iY12c18nMtvFIdZ1223j8pdyndtfowqjG65ujRuhjOlmOX5N8_jIbP-VJRYnoEkYErSQDCiLTXAEjoRPelUC0MaB0RbVQJc1KzQlRkkojVoyULFUgRGpIhO4PuRtnf3vtu2Jte9eGkwUGyDjjNIRGCB9clbPeO22Kjat_lNsGU7HnVuy5FXtuxZFb2Hk4JitfqcY41Va1Py2mHBNOQ4nQ3cFXa61PY46pTCUn_32DdCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009656405</pqid></control><display><type>article</type><title>DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger</title><source>IEEE Electronic Library (IEL)</source><creator>LIN, Faa-Jeng ; HUANG, Ming-Shi ; YEH, Po-Yi ; TSAI, Han-Chang ; KUAN, Chi-Hsuan</creator><creatorcontrib>LIN, Faa-Jeng ; HUANG, Ming-Shi ; YEH, Po-Yi ; TSAI, Han-Chang ; KUAN, Chi-Hsuan</creatorcontrib><description>A DSP-based probabilistic fuzzy neural network (PFNN) controller to control a two-stage ac-dc charger is pro- posed in this study. The charger is composed of an ac-dc boost converter with power factor correction and a phase-shift full- bridge dc-dc converter. Moreover, the designed charger adopts a constant-current and constant-voltage (CC-CV) charging strategy to charge lithium-ion battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is pro- posed to replace the traditional proportional-integral controller. Furthermore, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. In addition, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by experimental results.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2012.2187073</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AC-DC power converters ; Algorithms ; Applied sciences ; Batteries ; Constant-current (CC) charging ; constant-voltage (CV) charging DSP ; Control systems ; Controllers ; Electric currents ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electronics ; Exact sciences and technology ; Fuzzy control ; Fuzzy neural networks ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Miscellaneous ; Neural networks ; phase-shift full-bridge (PSFB) ; power factor correction (PFC) ; probabilistic fuzzy neural network (PFNN) ; Probabilistic logic ; Regulation and control ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Various equipment and components ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2012-08, Vol.27 (8), p.3782-3794</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5374c8504079e6a053537941803eff0aec4e7ab49be633a848f7d53b52a0772f3</citedby><cites>FETCH-LOGICAL-c437t-5374c8504079e6a053537941803eff0aec4e7ab49be633a848f7d53b52a0772f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6148286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6148286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26136461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIN, Faa-Jeng</creatorcontrib><creatorcontrib>HUANG, Ming-Shi</creatorcontrib><creatorcontrib>YEH, Po-Yi</creatorcontrib><creatorcontrib>TSAI, Han-Chang</creatorcontrib><creatorcontrib>KUAN, Chi-Hsuan</creatorcontrib><title>DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A DSP-based probabilistic fuzzy neural network (PFNN) controller to control a two-stage ac-dc charger is pro- posed in this study. The charger is composed of an ac-dc boost converter with power factor correction and a phase-shift full- bridge dc-dc converter. Moreover, the designed charger adopts a constant-current and constant-voltage (CC-CV) charging strategy to charge lithium-ion battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is pro- posed to replace the traditional proportional-integral controller. Furthermore, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. In addition, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by experimental results.</description><subject>AC-DC power converters</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Batteries</subject><subject>Constant-current (CC) charging</subject><subject>constant-voltage (CV) charging DSP</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Electric currents</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fuzzy control</subject><subject>Fuzzy neural networks</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>phase-shift full-bridge (PSFB)</subject><subject>power factor correction (PFC)</subject><subject>probabilistic fuzzy neural network (PFNN)</subject><subject>Probabilistic logic</subject><subject>Regulation and control</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Various equipment and components</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsEY_gHgJiMfU2ezfHG1ttRBswXoOm3RXU2O27iZI--nd0tLLPJh582b4IXSLYYgxZI_LxSQfpoDTYYqlAEHO0ABnFCeAQZyjAUjJEpll5BJdeb8GwJQBHqD58_siGSmvV_HC2VKVdVP7rq7iab_bbeM33TvVBOn-rPuOx7btnG1iY12c18nMtvFIdZ1223j8pdyndtfowqjG65ujRuhjOlmOX5N8_jIbP-VJRYnoEkYErSQDCiLTXAEjoRPelUC0MaB0RbVQJc1KzQlRkkojVoyULFUgRGpIhO4PuRtnf3vtu2Jte9eGkwUGyDjjNIRGCB9clbPeO22Kjat_lNsGU7HnVuy5FXtuxZFb2Hk4JitfqcY41Va1Py2mHBNOQ4nQ3cFXa61PY46pTCUn_32DdCI</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>LIN, Faa-Jeng</creator><creator>HUANG, Ming-Shi</creator><creator>YEH, Po-Yi</creator><creator>TSAI, Han-Chang</creator><creator>KUAN, Chi-Hsuan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120801</creationdate><title>DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger</title><author>LIN, Faa-Jeng ; HUANG, Ming-Shi ; YEH, Po-Yi ; TSAI, Han-Chang ; KUAN, Chi-Hsuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5374c8504079e6a053537941803eff0aec4e7ab49be633a848f7d53b52a0772f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AC-DC power converters</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Batteries</topic><topic>Constant-current (CC) charging</topic><topic>constant-voltage (CV) charging DSP</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Electric currents</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fuzzy control</topic><topic>Fuzzy neural networks</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>phase-shift full-bridge (PSFB)</topic><topic>power factor correction (PFC)</topic><topic>probabilistic fuzzy neural network (PFNN)</topic><topic>Probabilistic logic</topic><topic>Regulation and control</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Various equipment and components</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, Faa-Jeng</creatorcontrib><creatorcontrib>HUANG, Ming-Shi</creatorcontrib><creatorcontrib>YEH, Po-Yi</creatorcontrib><creatorcontrib>TSAI, Han-Chang</creatorcontrib><creatorcontrib>KUAN, Chi-Hsuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN, Faa-Jeng</au><au>HUANG, Ming-Shi</au><au>YEH, Po-Yi</au><au>TSAI, Han-Chang</au><au>KUAN, Chi-Hsuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>27</volume><issue>8</issue><spage>3782</spage><epage>3794</epage><pages>3782-3794</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A DSP-based probabilistic fuzzy neural network (PFNN) controller to control a two-stage ac-dc charger is pro- posed in this study. The charger is composed of an ac-dc boost converter with power factor correction and a phase-shift full- bridge dc-dc converter. Moreover, the designed charger adopts a constant-current and constant-voltage (CC-CV) charging strategy to charge lithium-ion battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is pro- posed to replace the traditional proportional-integral controller. Furthermore, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. In addition, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by experimental results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2012.2187073</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2012-08, Vol.27 (8), p.3782-3794
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1009656405
source IEEE Electronic Library (IEL)
subjects AC-DC power converters
Algorithms
Applied sciences
Batteries
Constant-current (CC) charging
constant-voltage (CV) charging DSP
Control systems
Controllers
Electric currents
Electric, optical and optoelectronic circuits
Electrical engineering. Electrical power engineering
Electrical machines
Electronics
Exact sciences and technology
Fuzzy control
Fuzzy neural networks
Integrated circuits
Integrated circuits by function (including memories and processors)
Miscellaneous
Neural networks
phase-shift full-bridge (PSFB)
power factor correction (PFC)
probabilistic fuzzy neural network (PFNN)
Probabilistic logic
Regulation and control
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Various equipment and components
Voltage control
title DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DSP-Based%20Probabilistic%20Fuzzy%20Neural%20Network%20Control%20for%20Li-Ion%20Battery%20Charger&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=LIN,%20Faa-Jeng&rft.date=2012-08-01&rft.volume=27&rft.issue=8&rft.spage=3782&rft.epage=3794&rft.pages=3782-3794&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2012.2187073&rft_dat=%3Cproquest_RIE%3E2644475381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009656405&rft_id=info:pmid/&rft_ieee_id=6148286&rfr_iscdi=true