Fuzzy Modeling Built Through a Data Mining Process
This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of dat...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2012-03, Vol.10 (2), p.1622-1626 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1626 |
---|---|
container_issue | 2 |
container_start_page | 1622 |
container_title | Revista IEEE América Latina |
container_volume | 10 |
creator | Wilges, B. Mateus, G. P. Nassar, S. M. Bastos, R. C. |
description | This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile. |
doi_str_mv | 10.1109/TLA.2012.6187607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1009116436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6187607</ieee_id><sourcerecordid>2642734691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-fa4f1dfa281fcc57d5ee91ad73407c4554ede6e7132a26aaa2fe851f9ce52c1c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO5v9SI61WhVa9FDPy7KZbVPSbN1NDu2vN6Uq4mkG3ucdhoeQa6AjAFrcL2bjEaPARhJyJak6IQMQPE9pUbDTP_s5uYhxTWmWyzwbEDbt9vtdMvcl1lWzTB66qm6TxSr4brlKTPJoWpPMq-aQvQdvMcZLcuZMHfHqew7Jx_RpMXlJZ2_Pr5PxLLWMqjZ1hjsonWE5OGuFKgViAaZUGafKciE4lihRQcYMk8YY5jAX4AqLglmw2ZDcHe9ug__sMLZ6U0WLdW0a9F3UIPtuBpyLHr39h659F5r-Ow2UFgCSZ7Kn6JGywccY0OltqDYm7HpIHyTqXqI-SNTfEvvKzbFSIeIv_pN-Aeewa98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009116436</pqid></control><display><type>article</type><title>Fuzzy Modeling Built Through a Data Mining Process</title><source>IEEE Electronic Library (IEL)</source><creator>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</creator><creatorcontrib>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</creatorcontrib><description>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2012.6187607</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Computational modeling ; Construction ; Data mining ; Data models ; Decision Tree ; Decision trees ; Educational institutions ; Fuzzy ; Fuzzy logic ; Fuzzy Modeling ; Fuzzy set theory ; Knowledge management ; Learning ; Mathematical model ; Students ; Studies ; Virtual Teaching Learning Environment</subject><ispartof>Revista IEEE América Latina, 2012-03, Vol.10 (2), p.1622-1626</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6187607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6187607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wilges, B.</creatorcontrib><creatorcontrib>Mateus, G. P.</creatorcontrib><creatorcontrib>Nassar, S. M.</creatorcontrib><creatorcontrib>Bastos, R. C.</creatorcontrib><title>Fuzzy Modeling Built Through a Data Mining Process</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</description><subject>Computational modeling</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data models</subject><subject>Decision Tree</subject><subject>Decision trees</subject><subject>Educational institutions</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy Modeling</subject><subject>Fuzzy set theory</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Mathematical model</subject><subject>Students</subject><subject>Studies</subject><subject>Virtual Teaching Learning Environment</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO5v9SI61WhVa9FDPy7KZbVPSbN1NDu2vN6Uq4mkG3ucdhoeQa6AjAFrcL2bjEaPARhJyJak6IQMQPE9pUbDTP_s5uYhxTWmWyzwbEDbt9vtdMvcl1lWzTB66qm6TxSr4brlKTPJoWpPMq-aQvQdvMcZLcuZMHfHqew7Jx_RpMXlJZ2_Pr5PxLLWMqjZ1hjsonWE5OGuFKgViAaZUGafKciE4lihRQcYMk8YY5jAX4AqLglmw2ZDcHe9ug__sMLZ6U0WLdW0a9F3UIPtuBpyLHr39h659F5r-Ow2UFgCSZ7Kn6JGywccY0OltqDYm7HpIHyTqXqI-SNTfEvvKzbFSIeIv_pN-Aeewa98</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Wilges, B.</creator><creator>Mateus, G. P.</creator><creator>Nassar, S. M.</creator><creator>Bastos, R. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>Fuzzy Modeling Built Through a Data Mining Process</title><author>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-fa4f1dfa281fcc57d5ee91ad73407c4554ede6e7132a26aaa2fe851f9ce52c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data models</topic><topic>Decision Tree</topic><topic>Decision trees</topic><topic>Educational institutions</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy Modeling</topic><topic>Fuzzy set theory</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Mathematical model</topic><topic>Students</topic><topic>Studies</topic><topic>Virtual Teaching Learning Environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilges, B.</creatorcontrib><creatorcontrib>Mateus, G. P.</creatorcontrib><creatorcontrib>Nassar, S. M.</creatorcontrib><creatorcontrib>Bastos, R. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilges, B.</au><au>Mateus, G. P.</au><au>Nassar, S. M.</au><au>Bastos, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Modeling Built Through a Data Mining Process</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2012-03</date><risdate>2012</risdate><volume>10</volume><issue>2</issue><spage>1622</spage><epage>1626</epage><pages>1622-1626</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2012.6187607</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2012-03, Vol.10 (2), p.1622-1626 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_1009116436 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Construction Data mining Data models Decision Tree Decision trees Educational institutions Fuzzy Fuzzy logic Fuzzy Modeling Fuzzy set theory Knowledge management Learning Mathematical model Students Studies Virtual Teaching Learning Environment |
title | Fuzzy Modeling Built Through a Data Mining Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Modeling%20Built%20Through%20a%20Data%20Mining%20Process&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Wilges,%20B.&rft.date=2012-03&rft.volume=10&rft.issue=2&rft.spage=1622&rft.epage=1626&rft.pages=1622-1626&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2012.6187607&rft_dat=%3Cproquest_RIE%3E2642734691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009116436&rft_id=info:pmid/&rft_ieee_id=6187607&rfr_iscdi=true |