Fuzzy Modeling Built Through a Data Mining Process

This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2012-03, Vol.10 (2), p.1622-1626
Hauptverfasser: Wilges, B., Mateus, G. P., Nassar, S. M., Bastos, R. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1626
container_issue 2
container_start_page 1622
container_title Revista IEEE América Latina
container_volume 10
creator Wilges, B.
Mateus, G. P.
Nassar, S. M.
Bastos, R. C.
description This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.
doi_str_mv 10.1109/TLA.2012.6187607
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1009116436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6187607</ieee_id><sourcerecordid>2642734691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-fa4f1dfa281fcc57d5ee91ad73407c4554ede6e7132a26aaa2fe851f9ce52c1c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO5v9SI61WhVa9FDPy7KZbVPSbN1NDu2vN6Uq4mkG3ucdhoeQa6AjAFrcL2bjEaPARhJyJak6IQMQPE9pUbDTP_s5uYhxTWmWyzwbEDbt9vtdMvcl1lWzTB66qm6TxSr4brlKTPJoWpPMq-aQvQdvMcZLcuZMHfHqew7Jx_RpMXlJZ2_Pr5PxLLWMqjZ1hjsonWE5OGuFKgViAaZUGafKciE4lihRQcYMk8YY5jAX4AqLglmw2ZDcHe9ug__sMLZ6U0WLdW0a9F3UIPtuBpyLHr39h659F5r-Ow2UFgCSZ7Kn6JGywccY0OltqDYm7HpIHyTqXqI-SNTfEvvKzbFSIeIv_pN-Aeewa98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009116436</pqid></control><display><type>article</type><title>Fuzzy Modeling Built Through a Data Mining Process</title><source>IEEE Electronic Library (IEL)</source><creator>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</creator><creatorcontrib>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</creatorcontrib><description>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2012.6187607</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Computational modeling ; Construction ; Data mining ; Data models ; Decision Tree ; Decision trees ; Educational institutions ; Fuzzy ; Fuzzy logic ; Fuzzy Modeling ; Fuzzy set theory ; Knowledge management ; Learning ; Mathematical model ; Students ; Studies ; Virtual Teaching Learning Environment</subject><ispartof>Revista IEEE América Latina, 2012-03, Vol.10 (2), p.1622-1626</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6187607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6187607$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wilges, B.</creatorcontrib><creatorcontrib>Mateus, G. P.</creatorcontrib><creatorcontrib>Nassar, S. M.</creatorcontrib><creatorcontrib>Bastos, R. C.</creatorcontrib><title>Fuzzy Modeling Built Through a Data Mining Process</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</description><subject>Computational modeling</subject><subject>Construction</subject><subject>Data mining</subject><subject>Data models</subject><subject>Decision Tree</subject><subject>Decision trees</subject><subject>Educational institutions</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy Modeling</subject><subject>Fuzzy set theory</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Mathematical model</subject><subject>Students</subject><subject>Studies</subject><subject>Virtual Teaching Learning Environment</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO5v9SI61WhVa9FDPy7KZbVPSbN1NDu2vN6Uq4mkG3ucdhoeQa6AjAFrcL2bjEaPARhJyJak6IQMQPE9pUbDTP_s5uYhxTWmWyzwbEDbt9vtdMvcl1lWzTB66qm6TxSr4brlKTPJoWpPMq-aQvQdvMcZLcuZMHfHqew7Jx_RpMXlJZ2_Pr5PxLLWMqjZ1hjsonWE5OGuFKgViAaZUGafKciE4lihRQcYMk8YY5jAX4AqLglmw2ZDcHe9ug__sMLZ6U0WLdW0a9F3UIPtuBpyLHr39h659F5r-Ow2UFgCSZ7Kn6JGywccY0OltqDYm7HpIHyTqXqI-SNTfEvvKzbFSIeIv_pN-Aeewa98</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Wilges, B.</creator><creator>Mateus, G. P.</creator><creator>Nassar, S. M.</creator><creator>Bastos, R. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>Fuzzy Modeling Built Through a Data Mining Process</title><author>Wilges, B. ; Mateus, G. P. ; Nassar, S. M. ; Bastos, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-fa4f1dfa281fcc57d5ee91ad73407c4554ede6e7132a26aaa2fe851f9ce52c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Construction</topic><topic>Data mining</topic><topic>Data models</topic><topic>Decision Tree</topic><topic>Decision trees</topic><topic>Educational institutions</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy Modeling</topic><topic>Fuzzy set theory</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Mathematical model</topic><topic>Students</topic><topic>Studies</topic><topic>Virtual Teaching Learning Environment</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilges, B.</creatorcontrib><creatorcontrib>Mateus, G. P.</creatorcontrib><creatorcontrib>Nassar, S. M.</creatorcontrib><creatorcontrib>Bastos, R. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilges, B.</au><au>Mateus, G. P.</au><au>Nassar, S. M.</au><au>Bastos, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Modeling Built Through a Data Mining Process</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2012-03</date><risdate>2012</risdate><volume>10</volume><issue>2</issue><spage>1622</spage><epage>1626</epage><pages>1622-1626</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work uses fuzzy logic to identify the learning profile of students in a teaching and learning environment. The purpose of this identification is to lead the student to more appropriate use of the available resources in the environment. The fuzzy modeling has been developed from a process of data mining. The mined data set has several learning profiles of several students. The classification method called Decision Tree (DT) was applied in the mining process, and for the comparison two algorithms were used. The analysis of data from the DT allowed to validate and improve the results of fuzzy modeling. This validation process can be used in the remodeling of the characteristics of any fuzzy system, it is a way to build a more harmonious and consistent model, in this case, the student profile.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2012.6187607</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2012-03, Vol.10 (2), p.1622-1626
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_1009116436
source IEEE Electronic Library (IEL)
subjects Computational modeling
Construction
Data mining
Data models
Decision Tree
Decision trees
Educational institutions
Fuzzy
Fuzzy logic
Fuzzy Modeling
Fuzzy set theory
Knowledge management
Learning
Mathematical model
Students
Studies
Virtual Teaching Learning Environment
title Fuzzy Modeling Built Through a Data Mining Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Modeling%20Built%20Through%20a%20Data%20Mining%20Process&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Wilges,%20B.&rft.date=2012-03&rft.volume=10&rft.issue=2&rft.spage=1622&rft.epage=1626&rft.pages=1622-1626&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2012.6187607&rft_dat=%3Cproquest_RIE%3E2642734691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009116436&rft_id=info:pmid/&rft_ieee_id=6187607&rfr_iscdi=true