Growth of self-assembled InP quantum islands for red-light-emitting injection lasers
In order to achieve laser emission in the visible part of the spectrum, we have investigated the growth of self-assembled InP quantum dots on GaInP by low-pressure metal-organic vapor phase epitaxy (MOVPE) using the Stranski-Krastanow growth mode. Unlike the well-established InAs-GaAs system, when I...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2000-05, Vol.6 (3), p.482-490 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to achieve laser emission in the visible part of the spectrum, we have investigated the growth of self-assembled InP quantum dots on GaInP by low-pressure metal-organic vapor phase epitaxy (MOVPE) using the Stranski-Krastanow growth mode. Unlike the well-established InAs-GaAs system, when InP is deposited on GaInP, typically, two types of coherently strained islands with different sizes are formed. A high density of small islands is favored when using growth conditions with a reduced surface diffusion, i.e., low temperatures, high growth rates, and substrates with high misorientation angles. After the deposition of 3.4 monolayers of InP at 580/spl deg/C on GaAs-substrates with a surface angle of 15/spl deg/ to the next [111]B-plane, 2.10/sup 10/ InP dots per square centimeter with an average height of 4 nm were assembled. The emission of these InP islands at 1.72 eV (4.2 K) shows an inhomogeneous broadening of 42 meV because of the size fluctuation of the quantum dots. At 90 K, lasing from self-assembled InP quantum islands was observed above a threshold current density of 288 A/cm/sup 2/. The detected laser line is located at 1.8 eV, about 80 meV higher than is the ground-state transition energy. We attribute this behavior to lasing from excited states in agreement with power-dependent photoluminescence experiments. For temperatures above 150 K, the threshold current density increases dramatically because of a thermally activated escape of carriers up to 4.9 k17/cm/sup 2/ at room temperature, where the characteristic temperature is 35 K. Injection lasers containing stacked InP quantum islands and AlGaInP barrier layers with a higher band offset may exhibit an improved temperature dependence. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/2944.865103 |