Methods for Obtaining the Optical Constants of a Material

There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 134
container_title
container_volume
description There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω) of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n T Rnn n =− ++ + = − =+ +( ) ( ), ( )1 11 4 1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them (two equations for two unknowns). One can then obtain other complex optical constants such as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the sample surfaces may need to be considered.) This method is not applicable in an opaque spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss reection-based methods for deriving the optical constants. These methods can derive both n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to various materials.
doi_str_mv 10.1201/b11040-10
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_846033_11_135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC846033_11_135</sourcerecordid><originalsourceid>FETCH-LOGICAL-i186t-8f8469b63d4c3e12b8c0ff3c5321e4b8ae1db922c70c213c49f424173b8b53fc3</originalsourceid><addsrcrecordid>eNotUMtOwzAQNEIgSumBP_APBLy2k9jHquIlteoFzpbt2NQQ7BIbEH9PorCHWc1hZmcHoWsgN0AJ3BoAwkkF5AStZCuAMzlB25yiy5nUrKXnaNHWUjS1IOQCrXJ-I-PUQo6wQHLnyiF1Gfs04L0pOsQQX3E5OLw_lmB1jzcp5qJjyTh5rPFOFzcE3V-hM6_77Fb_e4le7u-eN4_Vdv_wtFlvqwCiKZXwgjfSNKzjljmgRljiPbM1o-C4EdpBZySltiWWArNcek45tMwIUzNv2RLR2fc4pM8vl4tyJqV362IZdG8P-jjmyWq8QhhTAApYPYrWsyjE8bEP_ZOGvlNF__Zp8IOONuTJJCsgaupSzV1O9Ht0CylS9geOcmch</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC846033_11_135</pqid></control><display><type>book_chapter</type><title>Methods for Obtaining the Optical Constants of a Material</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><contributor>Taylor, Antoinette J. ; Prasankumar, Rohit P. ; Prasankumar, Rohit P ; Taylor, Antoinette J</contributor><creatorcontrib>Taylor, Antoinette J. ; Prasankumar, Rohit P. ; Prasankumar, Rohit P ; Taylor, Antoinette J</creatorcontrib><description>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω) of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n T Rnn n =− ++ + = − =+ +( ) ( ), ( )1 11 4 1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them (two equations for two unknowns). One can then obtain other complex optical constants such as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the sample surfaces may need to be considered.) This method is not applicable in an opaque spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss reection-based methods for deriving the optical constants. These methods can derive both n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to various materials.</description><identifier>ISBN: 1439815372</identifier><identifier>ISBN: 9781439815373</identifier><identifier>EISBN: 9781439814376</identifier><identifier>EISBN: 9780429192913</identifier><identifier>EISBN: 1439814376</identifier><identifier>EISBN: 0429192916</identifier><identifier>DOI: 10.1201/b11040-10</identifier><identifier>OCLC: 759865800</identifier><identifier>LCCallNum: QC176.8.O6 T43 2012</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><subject>Materials science ; Mechanics of solids ; Optics (light)</subject><ispartof>Optical Techniques for Solid-State Materials Characterization, 2012, p.134-173</ispartof><rights>2012 by Taylor &amp; Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/846033-l.jpg</thumbnail><link.rule.ids>779,780,784,793,24781,27925</link.rule.ids></links><search><contributor>Taylor, Antoinette J.</contributor><contributor>Prasankumar, Rohit P.</contributor><contributor>Prasankumar, Rohit P</contributor><contributor>Taylor, Antoinette J</contributor><title>Methods for Obtaining the Optical Constants of a Material</title><title>Optical Techniques for Solid-State Materials Characterization</title><description>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω) of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n T Rnn n =− ++ + = − =+ +( ) ( ), ( )1 11 4 1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them (two equations for two unknowns). One can then obtain other complex optical constants such as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the sample surfaces may need to be considered.) This method is not applicable in an opaque spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss reection-based methods for deriving the optical constants. These methods can derive both n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to various materials.</description><subject>Materials science</subject><subject>Mechanics of solids</subject><subject>Optics (light)</subject><isbn>1439815372</isbn><isbn>9781439815373</isbn><isbn>9781439814376</isbn><isbn>9780429192913</isbn><isbn>1439814376</isbn><isbn>0429192916</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2012</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMtOwzAQNEIgSumBP_APBLy2k9jHquIlteoFzpbt2NQQ7BIbEH9PorCHWc1hZmcHoWsgN0AJ3BoAwkkF5AStZCuAMzlB25yiy5nUrKXnaNHWUjS1IOQCrXJ-I-PUQo6wQHLnyiF1Gfs04L0pOsQQX3E5OLw_lmB1jzcp5qJjyTh5rPFOFzcE3V-hM6_77Fb_e4le7u-eN4_Vdv_wtFlvqwCiKZXwgjfSNKzjljmgRljiPbM1o-C4EdpBZySltiWWArNcek45tMwIUzNv2RLR2fc4pM8vl4tyJqV362IZdG8P-jjmyWq8QhhTAApYPYrWsyjE8bEP_ZOGvlNF__Zp8IOONuTJJCsgaupSzV1O9Ht0CylS9geOcmch</recordid><startdate>2012</startdate><enddate>2012</enddate><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2012</creationdate><title>Methods for Obtaining the Optical Constants of a Material</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i186t-8f8469b63d4c3e12b8c0ff3c5321e4b8ae1db922c70c213c49f424173b8b53fc3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Materials science</topic><topic>Mechanics of solids</topic><topic>Optics (light)</topic><toplevel>online_resources</toplevel><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Antoinette J.</au><au>Prasankumar, Rohit P.</au><au>Prasankumar, Rohit P</au><au>Taylor, Antoinette J</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Methods for Obtaining the Optical Constants of a Material</atitle><btitle>Optical Techniques for Solid-State Materials Characterization</btitle><date>2012</date><risdate>2012</risdate><spage>134</spage><epage>173</epage><pages>134-173</pages><isbn>1439815372</isbn><isbn>9781439815373</isbn><eisbn>9781439814376</eisbn><eisbn>9780429192913</eisbn><eisbn>1439814376</eisbn><eisbn>0429192916</eisbn><abstract>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω) of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n T Rnn n =− ++ + = − =+ +( ) ( ), ( )1 11 4 1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them (two equations for two unknowns). One can then obtain other complex optical constants such as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the sample surfaces may need to be considered.) This method is not applicable in an opaque spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss reection-based methods for deriving the optical constants. These methods can derive both n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to various materials.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/b11040-10</doi><oclcid>759865800</oclcid><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1439815372
ispartof Optical Techniques for Solid-State Materials Characterization, 2012, p.134-173
issn
language eng
recordid cdi_proquest_ebookcentralchapters_846033_11_135
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Materials science
Mechanics of solids
Optics (light)
title Methods for Obtaining the Optical Constants of a Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Methods%20for%20Obtaining%20the%20Optical%20Constants%20of%20a%20Material&rft.btitle=Optical%20Techniques%20for%20Solid-State%20Materials%20Characterization&rft.au=Taylor,%20Antoinette%20J.&rft.date=2012&rft.spage=134&rft.epage=173&rft.pages=134-173&rft.isbn=1439815372&rft.isbn_list=9781439815373&rft_id=info:doi/10.1201/b11040-10&rft_dat=%3Cproquest_infor%3EEBC846033_11_135%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781439814376&rft.eisbn_list=9780429192913&rft.eisbn_list=1439814376&rft.eisbn_list=0429192916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC846033_11_135&rft_id=info:pmid/&rfr_iscdi=true