Methods for Obtaining the Optical Constants of a Material
There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for simplicity normal incidence in...
Gespeichert in:
Format: | Buchkapitel |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | |
container_start_page | 134 |
container_title | |
container_volume | |
description | There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the
reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for
simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω)
of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n
T Rnn n
=− ++ +
= − =+ +( )
( ),
( )1
11
4
1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can
be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them
(two equations for two unknowns). One can then obtain other complex optical constants such
as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the
sample surfaces may need to be considered.) This method is not applicable in an opaque
spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss
reection-based methods for deriving the optical constants. These methods can derive both
n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to
various materials. |
doi_str_mv | 10.1201/b11040-10 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_846033_11_135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC846033_11_135</sourcerecordid><originalsourceid>FETCH-LOGICAL-i186t-8f8469b63d4c3e12b8c0ff3c5321e4b8ae1db922c70c213c49f424173b8b53fc3</originalsourceid><addsrcrecordid>eNotUMtOwzAQNEIgSumBP_APBLy2k9jHquIlteoFzpbt2NQQ7BIbEH9PorCHWc1hZmcHoWsgN0AJ3BoAwkkF5AStZCuAMzlB25yiy5nUrKXnaNHWUjS1IOQCrXJ-I-PUQo6wQHLnyiF1Gfs04L0pOsQQX3E5OLw_lmB1jzcp5qJjyTh5rPFOFzcE3V-hM6_77Fb_e4le7u-eN4_Vdv_wtFlvqwCiKZXwgjfSNKzjljmgRljiPbM1o-C4EdpBZySltiWWArNcek45tMwIUzNv2RLR2fc4pM8vl4tyJqV362IZdG8P-jjmyWq8QhhTAApYPYrWsyjE8bEP_ZOGvlNF__Zp8IOONuTJJCsgaupSzV1O9Ht0CylS9geOcmch</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC846033_11_135</pqid></control><display><type>book_chapter</type><title>Methods for Obtaining the Optical Constants of a Material</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><contributor>Taylor, Antoinette J. ; Prasankumar, Rohit P. ; Prasankumar, Rohit P ; Taylor, Antoinette J</contributor><creatorcontrib>Taylor, Antoinette J. ; Prasankumar, Rohit P. ; Prasankumar, Rohit P ; Taylor, Antoinette J</creatorcontrib><description>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the
reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for
simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω)
of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n
T Rnn n
=− ++ +
= − =+ +( )
( ),
( )1
11
4
1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can
be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them
(two equations for two unknowns). One can then obtain other complex optical constants such
as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the
sample surfaces may need to be considered.) This method is not applicable in an opaque
spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss
reection-based methods for deriving the optical constants. These methods can derive both
n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to
various materials.</description><identifier>ISBN: 1439815372</identifier><identifier>ISBN: 9781439815373</identifier><identifier>EISBN: 9781439814376</identifier><identifier>EISBN: 9780429192913</identifier><identifier>EISBN: 1439814376</identifier><identifier>EISBN: 0429192916</identifier><identifier>DOI: 10.1201/b11040-10</identifier><identifier>OCLC: 759865800</identifier><identifier>LCCallNum: QC176.8.O6 T43 2012</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><subject>Materials science ; Mechanics of solids ; Optics (light)</subject><ispartof>Optical Techniques for Solid-State Materials Characterization, 2012, p.134-173</ispartof><rights>2012 by Taylor & Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/846033-l.jpg</thumbnail><link.rule.ids>779,780,784,793,24781,27925</link.rule.ids></links><search><contributor>Taylor, Antoinette J.</contributor><contributor>Prasankumar, Rohit P.</contributor><contributor>Prasankumar, Rohit P</contributor><contributor>Taylor, Antoinette J</contributor><title>Methods for Obtaining the Optical Constants of a Material</title><title>Optical Techniques for Solid-State Materials Characterization</title><description>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the
reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for
simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω)
of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n
T Rnn n
=− ++ +
= − =+ +( )
( ),
( )1
11
4
1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can
be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them
(two equations for two unknowns). One can then obtain other complex optical constants such
as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the
sample surfaces may need to be considered.) This method is not applicable in an opaque
spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss
reection-based methods for deriving the optical constants. These methods can derive both
n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to
various materials.</description><subject>Materials science</subject><subject>Mechanics of solids</subject><subject>Optics (light)</subject><isbn>1439815372</isbn><isbn>9781439815373</isbn><isbn>9781439814376</isbn><isbn>9780429192913</isbn><isbn>1439814376</isbn><isbn>0429192916</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2012</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMtOwzAQNEIgSumBP_APBLy2k9jHquIlteoFzpbt2NQQ7BIbEH9PorCHWc1hZmcHoWsgN0AJ3BoAwkkF5AStZCuAMzlB25yiy5nUrKXnaNHWUjS1IOQCrXJ-I-PUQo6wQHLnyiF1Gfs04L0pOsQQX3E5OLw_lmB1jzcp5qJjyTh5rPFOFzcE3V-hM6_77Fb_e4le7u-eN4_Vdv_wtFlvqwCiKZXwgjfSNKzjljmgRljiPbM1o-C4EdpBZySltiWWArNcek45tMwIUzNv2RLR2fc4pM8vl4tyJqV362IZdG8P-jjmyWq8QhhTAApYPYrWsyjE8bEP_ZOGvlNF__Zp8IOONuTJJCsgaupSzV1O9Ht0CylS9geOcmch</recordid><startdate>2012</startdate><enddate>2012</enddate><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2012</creationdate><title>Methods for Obtaining the Optical Constants of a Material</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i186t-8f8469b63d4c3e12b8c0ff3c5321e4b8ae1db922c70c213c49f424173b8b53fc3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Materials science</topic><topic>Mechanics of solids</topic><topic>Optics (light)</topic><toplevel>online_resources</toplevel><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Antoinette J.</au><au>Prasankumar, Rohit P.</au><au>Prasankumar, Rohit P</au><au>Taylor, Antoinette J</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Methods for Obtaining the Optical Constants of a Material</atitle><btitle>Optical Techniques for Solid-State Materials Characterization</btitle><date>2012</date><risdate>2012</risdate><spage>134</spage><epage>173</epage><pages>134-173</pages><isbn>1439815372</isbn><isbn>9781439815373</isbn><eisbn>9781439814376</eisbn><eisbn>9780429192913</eisbn><eisbn>1439814376</eisbn><eisbn>0429192916</eisbn><abstract>There are various methods to experimentally evaluate the optical constants of a material. An optical constant is experimentally obtained by analyzing optical spectra, such as the
reectance R(ω) and transmittance T(ω), measured for the material of interest. Assuming for
simplicity normal incidence in the Fresnel’s equations discussed in Chapter 1, R(ω) and T(ω)
of a material are expressed in terms of the complex refractive index nˆ(ω) = n1(ω) + in2(ω) asRn nn n
T Rnn n
=− ++ +
= − =+ +( )
( ),
( )1
11
4
1(4.1)(ω dependencies are omitted.) If a material is transparent at ω and if both R(ω) and T(ω) can
be measured, one can derive n1(ω) and n2(ω) by solving the above two equations for them
(two equations for two unknowns). One can then obtain other complex optical constants such
as εˆ(ω) and σˆ(ω) as discussed in Chapter 1. (In practice, multiple internal reections at the
sample surfaces may need to be considered.) This method is not applicable in an opaque
spectral range since T(ω) cannot be measured there. Therefore, here we will mainly discuss
reection-based methods for deriving the optical constants. These methods can derive both
n1(ω) and n2(ω) based on reection measurements only and are more generally applicable to
various materials.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/b11040-10</doi><oclcid>759865800</oclcid><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1439815372 |
ispartof | Optical Techniques for Solid-State Materials Characterization, 2012, p.134-173 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_846033_11_135 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | Materials science Mechanics of solids Optics (light) |
title | Methods for Obtaining the Optical Constants of a Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Methods%20for%20Obtaining%20the%20Optical%20Constants%20of%20a%20Material&rft.btitle=Optical%20Techniques%20for%20Solid-State%20Materials%20Characterization&rft.au=Taylor,%20Antoinette%20J.&rft.date=2012&rft.spage=134&rft.epage=173&rft.pages=134-173&rft.isbn=1439815372&rft.isbn_list=9781439815373&rft_id=info:doi/10.1201/b11040-10&rft_dat=%3Cproquest_infor%3EEBC846033_11_135%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781439814376&rft.eisbn_list=9780429192913&rft.eisbn_list=1439814376&rft.eisbn_list=0429192916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC846033_11_135&rft_id=info:pmid/&rfr_iscdi=true |