More on Matrices

This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parberry, Ian, Dunn, Fletcher
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 161
container_title
container_volume
creator Parberry, Ian
Dunn, Fletcher
description This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.
doi_str_mv 10.1201/b11152-6
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_800971_51_184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4002927_11_184</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1444-ffa3fb451a0ff5100b64e601b77c792f50fae483b7e992b78e9d1cfdb36e9f243</originalsourceid><addsrcrecordid>eNqNkM1KAzEURiOiqLXQR-gLjN57879Tin_Q4kbXIZkmODhOajIqvr0t1b2rj29xzuIwNkO4QAK8DIgoqVEH7AwFt0ZZg3S4PVIZg5o4HrNTrUgZS4pO2LTWLoCQQkljzCmbrXKJ8zzMV34sXRvrOTtKvq9x-rsT9nx787S4b5aPdw-L62XToRCiScnzFIREDylJBAhKRAUYtG61pSQh-SgMDzpaS0GbaNfYpnXgKtpEgk8Y7b2bkt8_Yh1dDDm_tnEYi-_bF78ZY6nOAFiNTqJDs4P4fyABQJa0wz_qak91Q8rlzX_l0q_d6L_7XFLxQ9vVnaU6BLeL6vZRnXKfW1uXB-I_Nnhpcg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4002927_11_184</pqid></control><display><type>book_chapter</type><title>More on Matrices</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Parberry, Ian ; Dunn, Fletcher</creator><creatorcontrib>Parberry, Ian ; Dunn, Fletcher</creatorcontrib><description>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</description><edition>2</edition><identifier>ISBN: 1568817231</identifier><identifier>ISBN: 9781568817231</identifier><identifier>EISBN: 1439869812</identifier><identifier>EISBN: 9781498759892</identifier><identifier>EISBN: 0429190921</identifier><identifier>EISBN: 1498759890</identifier><identifier>EISBN: 9780429190926</identifier><identifier>EISBN: 9781439869819</identifier><identifier>DOI: 10.1201/b11152-6</identifier><identifier>OCLC: 762689262</identifier><identifier>LCCallNum: T385 .D875 2012</identifier><language>eng</language><publisher>United States: CRC Press</publisher><subject>Digital animation ; Games development &amp; programming ; Mathematical foundations</subject><ispartof>3D Math Primer for Graphics and Game Development, 2011, p.161-190</ispartof><rights>2011 by Taylor and Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4002927-l.jpg</thumbnail><link.rule.ids>775,776,780,789,24760,27902</link.rule.ids></links><search><creatorcontrib>Parberry, Ian</creatorcontrib><creatorcontrib>Dunn, Fletcher</creatorcontrib><title>More on Matrices</title><title>3D Math Primer for Graphics and Game Development</title><description>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</description><subject>Digital animation</subject><subject>Games development &amp; programming</subject><subject>Mathematical foundations</subject><isbn>1568817231</isbn><isbn>9781568817231</isbn><isbn>1439869812</isbn><isbn>9781498759892</isbn><isbn>0429190921</isbn><isbn>1498759890</isbn><isbn>9780429190926</isbn><isbn>9781439869819</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2011</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkM1KAzEURiOiqLXQR-gLjN57879Tin_Q4kbXIZkmODhOajIqvr0t1b2rj29xzuIwNkO4QAK8DIgoqVEH7AwFt0ZZg3S4PVIZg5o4HrNTrUgZS4pO2LTWLoCQQkljzCmbrXKJ8zzMV34sXRvrOTtKvq9x-rsT9nx787S4b5aPdw-L62XToRCiScnzFIREDylJBAhKRAUYtG61pSQh-SgMDzpaS0GbaNfYpnXgKtpEgk8Y7b2bkt8_Yh1dDDm_tnEYi-_bF78ZY6nOAFiNTqJDs4P4fyABQJa0wz_qak91Q8rlzX_l0q_d6L_7XFLxQ9vVnaU6BLeL6vZRnXKfW1uXB-I_Nnhpcg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Parberry, Ian</creator><creator>Dunn, Fletcher</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2011</creationdate><title>More on Matrices</title><author>Parberry, Ian ; Dunn, Fletcher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1444-ffa3fb451a0ff5100b64e601b77c792f50fae483b7e992b78e9d1cfdb36e9f243</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Digital animation</topic><topic>Games development &amp; programming</topic><topic>Mathematical foundations</topic><toplevel>online_resources</toplevel><creatorcontrib>Parberry, Ian</creatorcontrib><creatorcontrib>Dunn, Fletcher</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parberry, Ian</au><au>Dunn, Fletcher</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>More on Matrices</atitle><btitle>3D Math Primer for Graphics and Game Development</btitle><date>2011</date><risdate>2011</risdate><spage>161</spage><epage>190</epage><pages>161-190</pages><isbn>1568817231</isbn><isbn>9781568817231</isbn><eisbn>1439869812</eisbn><eisbn>9781498759892</eisbn><eisbn>0429190921</eisbn><eisbn>1498759890</eisbn><eisbn>9780429190926</eisbn><eisbn>9781439869819</eisbn><abstract>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</abstract><cop>United States</cop><pub>CRC Press</pub><doi>10.1201/b11152-6</doi><oclcid>762689262</oclcid><tpages>30</tpages><edition>2</edition></addata></record>
fulltext fulltext
identifier ISBN: 1568817231
ispartof 3D Math Primer for Graphics and Game Development, 2011, p.161-190
issn
language eng
recordid cdi_proquest_ebookcentralchapters_800971_51_184
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Digital animation
Games development & programming
Mathematical foundations
title More on Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=More%20on%20Matrices&rft.btitle=3D%20Math%20Primer%20for%20Graphics%20and%20Game%20Development&rft.au=Parberry,%20Ian&rft.date=2011&rft.spage=161&rft.epage=190&rft.pages=161-190&rft.isbn=1568817231&rft.isbn_list=9781568817231&rft_id=info:doi/10.1201/b11152-6&rft_dat=%3Cproquest_infor%3EEBC4002927_11_184%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1439869812&rft.eisbn_list=9781498759892&rft.eisbn_list=0429190921&rft.eisbn_list=1498759890&rft.eisbn_list=9780429190926&rft.eisbn_list=9781439869819&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4002927_11_184&rft_id=info:pmid/&rfr_iscdi=true