More on Matrices
This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | |
creator | Parberry, Ian Dunn, Fletcher |
description | This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. |
doi_str_mv | 10.1201/b11152-6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_800971_51_184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4002927_11_184</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1444-ffa3fb451a0ff5100b64e601b77c792f50fae483b7e992b78e9d1cfdb36e9f243</originalsourceid><addsrcrecordid>eNqNkM1KAzEURiOiqLXQR-gLjN57879Tin_Q4kbXIZkmODhOajIqvr0t1b2rj29xzuIwNkO4QAK8DIgoqVEH7AwFt0ZZg3S4PVIZg5o4HrNTrUgZS4pO2LTWLoCQQkljzCmbrXKJ8zzMV34sXRvrOTtKvq9x-rsT9nx787S4b5aPdw-L62XToRCiScnzFIREDylJBAhKRAUYtG61pSQh-SgMDzpaS0GbaNfYpnXgKtpEgk8Y7b2bkt8_Yh1dDDm_tnEYi-_bF78ZY6nOAFiNTqJDs4P4fyABQJa0wz_qak91Q8rlzX_l0q_d6L_7XFLxQ9vVnaU6BLeL6vZRnXKfW1uXB-I_Nnhpcg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4002927_11_184</pqid></control><display><type>book_chapter</type><title>More on Matrices</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Parberry, Ian ; Dunn, Fletcher</creator><creatorcontrib>Parberry, Ian ; Dunn, Fletcher</creatorcontrib><description>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</description><edition>2</edition><identifier>ISBN: 1568817231</identifier><identifier>ISBN: 9781568817231</identifier><identifier>EISBN: 1439869812</identifier><identifier>EISBN: 9781498759892</identifier><identifier>EISBN: 0429190921</identifier><identifier>EISBN: 1498759890</identifier><identifier>EISBN: 9780429190926</identifier><identifier>EISBN: 9781439869819</identifier><identifier>DOI: 10.1201/b11152-6</identifier><identifier>OCLC: 762689262</identifier><identifier>LCCallNum: T385 .D875 2012</identifier><language>eng</language><publisher>United States: CRC Press</publisher><subject>Digital animation ; Games development & programming ; Mathematical foundations</subject><ispartof>3D Math Primer for Graphics and Game Development, 2011, p.161-190</ispartof><rights>2011 by Taylor and Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4002927-l.jpg</thumbnail><link.rule.ids>775,776,780,789,24760,27902</link.rule.ids></links><search><creatorcontrib>Parberry, Ian</creatorcontrib><creatorcontrib>Dunn, Fletcher</creatorcontrib><title>More on Matrices</title><title>3D Math Primer for Graphics and Game Development</title><description>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</description><subject>Digital animation</subject><subject>Games development & programming</subject><subject>Mathematical foundations</subject><isbn>1568817231</isbn><isbn>9781568817231</isbn><isbn>1439869812</isbn><isbn>9781498759892</isbn><isbn>0429190921</isbn><isbn>1498759890</isbn><isbn>9780429190926</isbn><isbn>9781439869819</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2011</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkM1KAzEURiOiqLXQR-gLjN57879Tin_Q4kbXIZkmODhOajIqvr0t1b2rj29xzuIwNkO4QAK8DIgoqVEH7AwFt0ZZg3S4PVIZg5o4HrNTrUgZS4pO2LTWLoCQQkljzCmbrXKJ8zzMV34sXRvrOTtKvq9x-rsT9nx787S4b5aPdw-L62XToRCiScnzFIREDylJBAhKRAUYtG61pSQh-SgMDzpaS0GbaNfYpnXgKtpEgk8Y7b2bkt8_Yh1dDDm_tnEYi-_bF78ZY6nOAFiNTqJDs4P4fyABQJa0wz_qak91Q8rlzX_l0q_d6L_7XFLxQ9vVnaU6BLeL6vZRnXKfW1uXB-I_Nnhpcg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Parberry, Ian</creator><creator>Dunn, Fletcher</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2011</creationdate><title>More on Matrices</title><author>Parberry, Ian ; Dunn, Fletcher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1444-ffa3fb451a0ff5100b64e601b77c792f50fae483b7e992b78e9d1cfdb36e9f243</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Digital animation</topic><topic>Games development & programming</topic><topic>Mathematical foundations</topic><toplevel>online_resources</toplevel><creatorcontrib>Parberry, Ian</creatorcontrib><creatorcontrib>Dunn, Fletcher</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parberry, Ian</au><au>Dunn, Fletcher</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>More on Matrices</atitle><btitle>3D Math Primer for Graphics and Game Development</btitle><date>2011</date><risdate>2011</risdate><spage>161</spage><epage>190</epage><pages>161-190</pages><isbn>1568817231</isbn><isbn>9781568817231</isbn><eisbn>1439869812</eisbn><eisbn>9781498759892</eisbn><eisbn>0429190921</eisbn><eisbn>1498759890</eisbn><eisbn>9780429190926</eisbn><eisbn>9781439869819</eisbn><abstract>This chapter introduces homogeneous vectors and 4 × 4 matrices, and shows how they can be used to perform affine transformations in 3D. It discusses perspective projection and shows how to do it with a 4 × 4 matrix. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute. The determinant of a matrix has an interesting geometric interpretation. In 2D, the determinant is equal to the signed area of the parallelogram or skew box that has the basis vectors as two sides. The determinant of the matrix can also be used to help classify the type of transformation represented by a matrix. If the determinant of a matrix is zero, then the matrix contains a projection. Orthogonal matrices are interesting to us primarily because their inverse is trivial to compute.</abstract><cop>United States</cop><pub>CRC Press</pub><doi>10.1201/b11152-6</doi><oclcid>762689262</oclcid><tpages>30</tpages><edition>2</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1568817231 |
ispartof | 3D Math Primer for Graphics and Game Development, 2011, p.161-190 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_800971_51_184 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | Digital animation Games development & programming Mathematical foundations |
title | More on Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=More%20on%20Matrices&rft.btitle=3D%20Math%20Primer%20for%20Graphics%20and%20Game%20Development&rft.au=Parberry,%20Ian&rft.date=2011&rft.spage=161&rft.epage=190&rft.pages=161-190&rft.isbn=1568817231&rft.isbn_list=9781568817231&rft_id=info:doi/10.1201/b11152-6&rft_dat=%3Cproquest_infor%3EEBC4002927_11_184%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1439869812&rft.eisbn_list=9781498759892&rft.eisbn_list=0429190921&rft.eisbn_list=1498759890&rft.eisbn_list=9780429190926&rft.eisbn_list=9781439869819&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4002927_11_184&rft_id=info:pmid/&rfr_iscdi=true |