Solving the Hamilton-Jacobi Equation

This chapter reviews some major approaches for solving the Hamilton-Jacobi equation (HJEs), and present one algorithm that may yield global solutions. It discusses some popular polynomial and Taylor-series approximation methods for solving the HJEs and examines a factorization approach which may yie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Aliyu, S
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue
container_start_page 333
container_title
container_volume
creator Aliyu, S
description This chapter reviews some major approaches for solving the Hamilton-Jacobi equation (HJEs), and present one algorithm that may yield global solutions. It discusses some popular polynomial and Taylor-series approximation methods for solving the HJEs and examines a factorization approach which may yield exact and global solutions. It explores the extension of this approach to Hamiltonian mechanical systems. The chapter proposes some major approaches for solving the Hamilton-Jacobi-Bellman equation (HJBE) and Hamilton-Jacobi-Isaacs equation (HJIE) that have been proposed in the literature. In a recursive procedure for the HJBE for a class of nonlinear systems. It presents a factorization approach that may yield exact global solutions of the HJIE for the class of affine nonlinear systems. The chapter deals with a discussion of sufficiency conditions for the existence of exact solutions to the HJIE which are provided by the Implicit-function Theorem.
doi_str_mv 10.1201/b10734-13
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_800959_19_350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5205325_134_595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1460-53b60865fff2eb8c8442a94e950d1d563e059eeafb4348aed77a0d74c5a494f33</originalsourceid><addsrcrecordid>eNqNkLFOwzAQho0QCCgdeIMOrIE72xfbY1UVCqrEAMyWk9jUIsQlSYt4e4zKAzDdcPo-6f8Yu0K4QQ54WyEoIQsUR-wCBRJHJTgds6lRGlFoUFxReZqfgBpJIJRnbDoMsQIBgoC4OmfXz6ndx-5tNm78bOU-Yjumrnh0daribPm5c2NM3SU7Ca4d_PTvTtjr3fJlsSrWT_cPi_m6iChLKEhUJeiSQgjcV7rWUnJnpDcEDTZUCg9kvHehkkJq5xulHDRK1uSkkUGICeMH77ZPnzs_jNZXKb3Xvht719Ybtx19P1gNYMhYNDavyJD8D0QcKOexKKQlQxmbH7DYhdR_uK_Ut40d3Xeb-tC7ro7Dr2awCPY3tz3kzrzdZ1-uwsUPIzZx_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5205325_134_595</pqid></control><display><type>book_chapter</type><title>Solving the Hamilton-Jacobi Equation</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Aliyu, S</creator><creatorcontrib>Aliyu, S</creatorcontrib><description>This chapter reviews some major approaches for solving the Hamilton-Jacobi equation (HJEs), and present one algorithm that may yield global solutions. It discusses some popular polynomial and Taylor-series approximation methods for solving the HJEs and examines a factorization approach which may yield exact and global solutions. It explores the extension of this approach to Hamiltonian mechanical systems. The chapter proposes some major approaches for solving the Hamilton-Jacobi-Bellman equation (HJBE) and Hamilton-Jacobi-Isaacs equation (HJIE) that have been proposed in the literature. In a recursive procedure for the HJBE for a class of nonlinear systems. It presents a factorization approach that may yield exact global solutions of the HJIE for the class of affine nonlinear systems. The chapter deals with a discussion of sufficiency conditions for the existence of exact solutions to the HJIE which are provided by the Implicit-function Theorem.</description><edition>1</edition><identifier>ISBN: 9781138072756</identifier><identifier>ISBN: 1138072753</identifier><identifier>ISBN: 9781439854839</identifier><identifier>ISBN: 1439854831</identifier><identifier>EISBN: 1315217325</identifier><identifier>EISBN: 9781315217321</identifier><identifier>EISBN: 1351833219</identifier><identifier>EISBN: 9781351833219</identifier><identifier>EISBN: 1439854858</identifier><identifier>EISBN: 9781439854853</identifier><identifier>DOI: 10.1201/b10734-13</identifier><identifier>OCLC: 1018153106</identifier><identifier>OCLC: 769189659</identifier><identifier>LCCallNum: QA614.83 .A459 2011</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><subject>Calculus of variations ; MATHEMATICS ; Power generation &amp; distribution</subject><ispartof>Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations, 2011, p.333-357</ispartof><rights>2011 by Taylor and Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5205325-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><creatorcontrib>Aliyu, S</creatorcontrib><title>Solving the Hamilton-Jacobi Equation</title><title>Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations</title><description>This chapter reviews some major approaches for solving the Hamilton-Jacobi equation (HJEs), and present one algorithm that may yield global solutions. It discusses some popular polynomial and Taylor-series approximation methods for solving the HJEs and examines a factorization approach which may yield exact and global solutions. It explores the extension of this approach to Hamiltonian mechanical systems. The chapter proposes some major approaches for solving the Hamilton-Jacobi-Bellman equation (HJBE) and Hamilton-Jacobi-Isaacs equation (HJIE) that have been proposed in the literature. In a recursive procedure for the HJBE for a class of nonlinear systems. It presents a factorization approach that may yield exact global solutions of the HJIE for the class of affine nonlinear systems. The chapter deals with a discussion of sufficiency conditions for the existence of exact solutions to the HJIE which are provided by the Implicit-function Theorem.</description><subject>Calculus of variations</subject><subject>MATHEMATICS</subject><subject>Power generation &amp; distribution</subject><isbn>9781138072756</isbn><isbn>1138072753</isbn><isbn>9781439854839</isbn><isbn>1439854831</isbn><isbn>1315217325</isbn><isbn>9781315217321</isbn><isbn>1351833219</isbn><isbn>9781351833219</isbn><isbn>1439854858</isbn><isbn>9781439854853</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2011</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkLFOwzAQho0QCCgdeIMOrIE72xfbY1UVCqrEAMyWk9jUIsQlSYt4e4zKAzDdcPo-6f8Yu0K4QQ54WyEoIQsUR-wCBRJHJTgds6lRGlFoUFxReZqfgBpJIJRnbDoMsQIBgoC4OmfXz6ndx-5tNm78bOU-Yjumrnh0daribPm5c2NM3SU7Ca4d_PTvTtjr3fJlsSrWT_cPi_m6iChLKEhUJeiSQgjcV7rWUnJnpDcEDTZUCg9kvHehkkJq5xulHDRK1uSkkUGICeMH77ZPnzs_jNZXKb3Xvht719Ybtx19P1gNYMhYNDavyJD8D0QcKOexKKQlQxmbH7DYhdR_uK_Ut40d3Xeb-tC7ro7Dr2awCPY3tz3kzrzdZ1-uwsUPIzZx_Q</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Aliyu, S</creator><general>CRC Press</general><general>CRC Press LLC</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2011</creationdate><title>Solving the Hamilton-Jacobi Equation</title><author>Aliyu, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1460-53b60865fff2eb8c8442a94e950d1d563e059eeafb4348aed77a0d74c5a494f33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations</topic><topic>MATHEMATICS</topic><topic>Power generation &amp; distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Aliyu, S</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyu, S</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Solving the Hamilton-Jacobi Equation</atitle><btitle>Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations</btitle><date>2011</date><risdate>2011</risdate><spage>333</spage><epage>357</epage><pages>333-357</pages><isbn>9781138072756</isbn><isbn>1138072753</isbn><isbn>9781439854839</isbn><isbn>1439854831</isbn><eisbn>1315217325</eisbn><eisbn>9781315217321</eisbn><eisbn>1351833219</eisbn><eisbn>9781351833219</eisbn><eisbn>1439854858</eisbn><eisbn>9781439854853</eisbn><abstract>This chapter reviews some major approaches for solving the Hamilton-Jacobi equation (HJEs), and present one algorithm that may yield global solutions. It discusses some popular polynomial and Taylor-series approximation methods for solving the HJEs and examines a factorization approach which may yield exact and global solutions. It explores the extension of this approach to Hamiltonian mechanical systems. The chapter proposes some major approaches for solving the Hamilton-Jacobi-Bellman equation (HJBE) and Hamilton-Jacobi-Isaacs equation (HJIE) that have been proposed in the literature. In a recursive procedure for the HJBE for a class of nonlinear systems. It presents a factorization approach that may yield exact global solutions of the HJIE for the class of affine nonlinear systems. The chapter deals with a discussion of sufficiency conditions for the existence of exact solutions to the HJIE which are provided by the Implicit-function Theorem.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/b10734-13</doi><oclcid>1018153106</oclcid><oclcid>769189659</oclcid><tpages>25</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9781138072756
ispartof Nonlinear H-Infinity Control, Hamiltonian Systems and Hamilton-Jacobi Equations, 2011, p.333-357
issn
language eng
recordid cdi_proquest_ebookcentralchapters_800959_19_350
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Calculus of variations
MATHEMATICS
Power generation & distribution
title Solving the Hamilton-Jacobi Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Solving%20the%20Hamilton-Jacobi%20Equation&rft.btitle=Nonlinear%20H-Infinity%20Control,%20Hamiltonian%20Systems%20and%20Hamilton-Jacobi%20Equations&rft.au=Aliyu,%20S&rft.date=2011&rft.spage=333&rft.epage=357&rft.pages=333-357&rft.isbn=9781138072756&rft.isbn_list=1138072753&rft.isbn_list=9781439854839&rft.isbn_list=1439854831&rft_id=info:doi/10.1201/b10734-13&rft_dat=%3Cproquest_infor%3EEBC5205325_134_595%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1315217325&rft.eisbn_list=9781315217321&rft.eisbn_list=1351833219&rft.eisbn_list=9781351833219&rft.eisbn_list=1439854858&rft.eisbn_list=9781439854853&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5205325_134_595&rft_id=info:pmid/&rfr_iscdi=true