Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms
This chapter discusses the detailed development of the sensor network technology for assessing Parkinson’s disease motor symptoms and how several challenges were resolved by engineering teams to produce a clinically deployable system. The translation of existing medical technologies to mainstream cl...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | |
container_start_page | 247 |
container_title | |
container_volume | |
creator | Giuffrida, Joseph P. Rapp, Edward J. |
description | This chapter discusses the detailed development of the sensor network technology for assessing Parkinson’s disease motor symptoms and how several challenges were resolved by engineering teams to produce a clinically deployable system. The translation of existing medical technologies to mainstream clinical use can significantly impact healthcare access, costs and outcomes, including telehealth technologies for remote diagnosis and mobile, portable diagnostics for home-based monitoring. Carefully analysing and summarizing the intended patient characteristics, symptoms to be monitored and clinician requirements, as well as interpreting between clinical jargon and standard engineering notations to form a coherent set of input specifications, can make or break a new medical device technology. Clinicians will be responsible for reviewing and interpreting the data collected by the ambulatory sensor networks. By reducing motor fluctuations through optimized medication titration, events such as trips and falls may be avoided. |
doi_str_mv | 10.1201/b11195-10 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_800896_18_262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC800896_18_262</sourcerecordid><originalsourceid>FETCH-LOGICAL-i186t-f5304a7fec4aeaa916d978099b0f7c328acc03445f13bb67a6387c68ac777ac13</originalsourceid><addsrcrecordid>eNotkN1KAzEQhSOiWGsvfIN9gWomySbZy1J_KiiKP-DdMptmNXQ3qclW6Z2v4ev5JO5SYWCYwzkfwyHkFOgZMArnFQAU-RToHpkUSlPBCsiZyOk-OQbBC81Aw-shGSnJQQIX8ohMUnIVzaXoR4gRWczaatNgF-I2Q7_MHm0bOpvdBe96zfm3LNTZA8aV8yn43--flF24ZDENnt6RPW3bdRfadEIOamySnfzvMXm5unyeL6a399c389nt1IGW3bTOORWoamsEWsQC5HJ4vSgqWivDmUZjKBcir4FXlVQouVZG9rJSCg3wMWE77jqGj41NXWmrEFbG-i5iY95x3dmYSk2pLmQJumSS9aHZLuR8HWKLXyE2y7LDbRNiHdEblwZIKoGWQ7Xlrtrh_OxpLnjG_wDqDW8M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC800896_18_262</pqid></control><display><type>book_chapter</type><title>Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms</title><source>eBooks on EBSCOhost</source><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Giuffrida, Joseph P. ; Rapp, Edward J.</creator><contributor>Lai, Daniel Tze Huei ; Palaniswami, Marimuthu ; Begg, Rezaul</contributor><creatorcontrib>Giuffrida, Joseph P. ; Rapp, Edward J. ; Lai, Daniel Tze Huei ; Palaniswami, Marimuthu ; Begg, Rezaul</creatorcontrib><description>This chapter discusses the detailed development of the sensor network technology for assessing Parkinson’s disease motor symptoms and how several challenges were resolved by engineering teams to produce a clinically deployable system. The translation of existing medical technologies to mainstream clinical use can significantly impact healthcare access, costs and outcomes, including telehealth technologies for remote diagnosis and mobile, portable diagnostics for home-based monitoring. Carefully analysing and summarizing the intended patient characteristics, symptoms to be monitored and clinician requirements, as well as interpreting between clinical jargon and standard engineering notations to form a coherent set of input specifications, can make or break a new medical device technology. Clinicians will be responsible for reviewing and interpreting the data collected by the ambulatory sensor networks. By reducing motor fluctuations through optimized medication titration, events such as trips and falls may be avoided.</description><edition>1</edition><identifier>ISBN: 143982181X</identifier><identifier>ISBN: 0367382334</identifier><identifier>ISBN: 9781439821817</identifier><identifier>ISBN: 9780367382339</identifier><identifier>EISBN: 9780429152450</identifier><identifier>EISBN: 0429152450</identifier><identifier>EISBN: 1439821828</identifier><identifier>EISBN: 9781439821824</identifier><identifier>DOI: 10.1201/b11195-10</identifier><identifier>OCLC: 763161346</identifier><identifier>LCCallNum: R857.B54 H43 2012</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><subject>Educational: Sciences, general science ; Instruments & instrumentation engineering ; MEDICINE: GENERAL ISSUES</subject><ispartof>Healthcare Sensor Networks, 2012, p.247-281</ispartof><rights>2012 by Taylor & Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/800896-l.jpg</thumbnail><link.rule.ids>780,781,785,794,27930</link.rule.ids></links><search><contributor>Lai, Daniel Tze Huei</contributor><contributor>Palaniswami, Marimuthu</contributor><contributor>Begg, Rezaul</contributor><creatorcontrib>Giuffrida, Joseph P.</creatorcontrib><creatorcontrib>Rapp, Edward J.</creatorcontrib><title>Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms</title><title>Healthcare Sensor Networks</title><description>This chapter discusses the detailed development of the sensor network technology for assessing Parkinson’s disease motor symptoms and how several challenges were resolved by engineering teams to produce a clinically deployable system. The translation of existing medical technologies to mainstream clinical use can significantly impact healthcare access, costs and outcomes, including telehealth technologies for remote diagnosis and mobile, portable diagnostics for home-based monitoring. Carefully analysing and summarizing the intended patient characteristics, symptoms to be monitored and clinician requirements, as well as interpreting between clinical jargon and standard engineering notations to form a coherent set of input specifications, can make or break a new medical device technology. Clinicians will be responsible for reviewing and interpreting the data collected by the ambulatory sensor networks. By reducing motor fluctuations through optimized medication titration, events such as trips and falls may be avoided.</description><subject>Educational: Sciences, general science</subject><subject>Instruments & instrumentation engineering</subject><subject>MEDICINE: GENERAL ISSUES</subject><isbn>143982181X</isbn><isbn>0367382334</isbn><isbn>9781439821817</isbn><isbn>9780367382339</isbn><isbn>9780429152450</isbn><isbn>0429152450</isbn><isbn>1439821828</isbn><isbn>9781439821824</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2012</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkN1KAzEQhSOiWGsvfIN9gWomySbZy1J_KiiKP-DdMptmNXQ3qclW6Z2v4ev5JO5SYWCYwzkfwyHkFOgZMArnFQAU-RToHpkUSlPBCsiZyOk-OQbBC81Aw-shGSnJQQIX8ohMUnIVzaXoR4gRWczaatNgF-I2Q7_MHm0bOpvdBe96zfm3LNTZA8aV8yn43--flF24ZDENnt6RPW3bdRfadEIOamySnfzvMXm5unyeL6a399c389nt1IGW3bTOORWoamsEWsQC5HJ4vSgqWivDmUZjKBcir4FXlVQouVZG9rJSCg3wMWE77jqGj41NXWmrEFbG-i5iY95x3dmYSk2pLmQJumSS9aHZLuR8HWKLXyE2y7LDbRNiHdEblwZIKoGWQ7Xlrtrh_OxpLnjG_wDqDW8M</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Giuffrida, Joseph P.</creator><creator>Rapp, Edward J.</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2012</creationdate><title>Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms</title><author>Giuffrida, Joseph P. ; Rapp, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i186t-f5304a7fec4aeaa916d978099b0f7c328acc03445f13bb67a6387c68ac777ac13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Educational: Sciences, general science</topic><topic>Instruments & instrumentation engineering</topic><topic>MEDICINE: GENERAL ISSUES</topic><toplevel>online_resources</toplevel><creatorcontrib>Giuffrida, Joseph P.</creatorcontrib><creatorcontrib>Rapp, Edward J.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giuffrida, Joseph P.</au><au>Rapp, Edward J.</au><au>Lai, Daniel Tze Huei</au><au>Palaniswami, Marimuthu</au><au>Begg, Rezaul</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms</atitle><btitle>Healthcare Sensor Networks</btitle><date>2012</date><risdate>2012</risdate><spage>247</spage><epage>281</epage><pages>247-281</pages><isbn>143982181X</isbn><isbn>0367382334</isbn><isbn>9781439821817</isbn><isbn>9780367382339</isbn><eisbn>9780429152450</eisbn><eisbn>0429152450</eisbn><eisbn>1439821828</eisbn><eisbn>9781439821824</eisbn><abstract>This chapter discusses the detailed development of the sensor network technology for assessing Parkinson’s disease motor symptoms and how several challenges were resolved by engineering teams to produce a clinically deployable system. The translation of existing medical technologies to mainstream clinical use can significantly impact healthcare access, costs and outcomes, including telehealth technologies for remote diagnosis and mobile, portable diagnostics for home-based monitoring. Carefully analysing and summarizing the intended patient characteristics, symptoms to be monitored and clinician requirements, as well as interpreting between clinical jargon and standard engineering notations to form a coherent set of input specifications, can make or break a new medical device technology. Clinicians will be responsible for reviewing and interpreting the data collected by the ambulatory sensor networks. By reducing motor fluctuations through optimized medication titration, events such as trips and falls may be avoided.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/b11195-10</doi><oclcid>763161346</oclcid><tpages>35</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 143982181X |
ispartof | Healthcare Sensor Networks, 2012, p.247-281 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_800896_18_262 |
source | eBooks on EBSCOhost; O'Reilly Online Learning: Academic/Public Library Edition |
subjects | Educational: Sciences, general science Instruments & instrumentation engineering MEDICINE: GENERAL ISSUES |
title | Ambulatory and Remote Monitoring of Parkinson’s Disease Motor Symptoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Ambulatory%20and%20Remote%20Monitoring%20of%20Parkinson%E2%80%99s%20Disease%20Motor%20Symptoms&rft.btitle=Healthcare%20Sensor%20Networks&rft.au=Giuffrida,%20Joseph%20P.&rft.date=2012&rft.spage=247&rft.epage=281&rft.pages=247-281&rft.isbn=143982181X&rft.isbn_list=0367382334&rft.isbn_list=9781439821817&rft.isbn_list=9780367382339&rft_id=info:doi/10.1201/b11195-10&rft_dat=%3Cproquest_infor%3EEBC800896_18_262%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780429152450&rft.eisbn_list=0429152450&rft.eisbn_list=1439821828&rft.eisbn_list=9781439821824&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC800896_18_262&rft_id=info:pmid/&rfr_iscdi=true |