Optimization of shield tunneling parameters under controlled surface settlements
The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of tim...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2724 |
---|---|
container_issue | |
container_start_page | 2717 |
container_title | |
container_volume | |
creator | Jongpradist, P. Wainiphithapong, S. Phutthananon, C. |
description | The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement. |
doi_str_mv | 10.1201/9781003348030-327 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7245327_339_3907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7245327_339_3907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2257-240da0bdfdac3b61031d9e60f38764a3cd21f9b2c24a11461a7291bf0dc1b4713</originalsourceid><addsrcrecordid>eNpVkMtOxCAYhXGhUcd5AHe8QJVLW8rSTLxMMokudE0oFwelUIFq9OltM25c_cn5c76cfABcYnSFCcLXnHUYIUrrDlFUUcKOwPqQId6wjpATcI4p6zglvOlOwTrnt_lHeNtgRs7A0-NY3OB-ZHExwGhh3jvjNSxTCMa78ApHmeRgikkZTkGbBFUMJUXvjYZ5SlYqA7MpxZvBhJIvwLGVPpv1312Bl7vb581DtXu8325udpUjpGEVqZGWqNdWS0X7FiOKNTctsrRjbS2p0gRb3hNFaolx3WLJCMe9RVrhvmaYrkBz4I4pfkwmF2H6GN_VvCFJr_ZyXCYLRupmtiIo5YJyxObe9tBzwcY0yK-YvBZFfvuYbJJBubxwssBILIbFP8NiYX3O4NkWob-p-XNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7245327_339_3907</pqid></control><display><type>book_chapter</type><title>Optimization of shield tunneling parameters under controlled surface settlements</title><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C.</creator><contributor>Benardos, Andreas ; Anagnostou, Georgios ; Marinos, Vassilis P.</contributor><creatorcontrib>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C. ; Benardos, Andreas ; Anagnostou, Georgios ; Marinos, Vassilis P.</creatorcontrib><description>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</description><edition>1</edition><identifier>EISBN: 9781000957822</identifier><identifier>EISBN: 9781000957839</identifier><identifier>EISBN: 1003348033</identifier><identifier>EISBN: 1000957829</identifier><identifier>EISBN: 9781003348030</identifier><identifier>EISBN: 1000957837</identifier><identifier>DOI: 10.1201/9781003348030-327</identifier><identifier>OCLC: 1378932958</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World, 2023, p.2717-2724</ispartof><rights>2023 Taylor & Francis Group, London, UK</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7245327-l.jpg</thumbnail><link.rule.ids>775,776,780,789,24760,27902</link.rule.ids></links><search><contributor>Benardos, Andreas</contributor><contributor>Anagnostou, Georgios</contributor><contributor>Marinos, Vassilis P.</contributor><creatorcontrib>Jongpradist, P.</creatorcontrib><creatorcontrib>Wainiphithapong, S.</creatorcontrib><creatorcontrib>Phutthananon, C.</creatorcontrib><title>Optimization of shield tunneling parameters under controlled surface settlements</title><title>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World</title><description>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</description><isbn>9781000957822</isbn><isbn>9781000957839</isbn><isbn>1003348033</isbn><isbn>1000957829</isbn><isbn>9781003348030</isbn><isbn>1000957837</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkMtOxCAYhXGhUcd5AHe8QJVLW8rSTLxMMokudE0oFwelUIFq9OltM25c_cn5c76cfABcYnSFCcLXnHUYIUrrDlFUUcKOwPqQId6wjpATcI4p6zglvOlOwTrnt_lHeNtgRs7A0-NY3OB-ZHExwGhh3jvjNSxTCMa78ApHmeRgikkZTkGbBFUMJUXvjYZ5SlYqA7MpxZvBhJIvwLGVPpv1312Bl7vb581DtXu8325udpUjpGEVqZGWqNdWS0X7FiOKNTctsrRjbS2p0gRb3hNFaolx3WLJCMe9RVrhvmaYrkBz4I4pfkwmF2H6GN_VvCFJr_ZyXCYLRupmtiIo5YJyxObe9tBzwcY0yK-YvBZFfvuYbJJBubxwssBILIbFP8NiYX3O4NkWob-p-XNE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Jongpradist, P.</creator><creator>Wainiphithapong, S.</creator><creator>Phutthananon, C.</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Optimization of shield tunneling parameters under controlled surface settlements</title><author>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2257-240da0bdfdac3b61031d9e60f38764a3cd21f9b2c24a11461a7291bf0dc1b4713</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jongpradist, P.</creatorcontrib><creatorcontrib>Wainiphithapong, S.</creatorcontrib><creatorcontrib>Phutthananon, C.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jongpradist, P.</au><au>Wainiphithapong, S.</au><au>Phutthananon, C.</au><au>Benardos, Andreas</au><au>Anagnostou, Georgios</au><au>Marinos, Vassilis P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimization of shield tunneling parameters under controlled surface settlements</atitle><btitle>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World</btitle><date>2023</date><risdate>2023</risdate><spage>2717</spage><epage>2724</epage><pages>2717-2724</pages><eisbn>9781000957822</eisbn><eisbn>9781000957839</eisbn><eisbn>1003348033</eisbn><eisbn>1000957829</eisbn><eisbn>9781003348030</eisbn><eisbn>1000957837</eisbn><abstract>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003348030-327</doi><oclcid>1378932958</oclcid><tpages>8</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISBN: 9781000957822 |
ispartof | Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World, 2023, p.2717-2724 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_7245327_339_3907 |
source | OAPEN; DOAB: Directory of Open Access Books |
title | Optimization of shield tunneling parameters under controlled surface settlements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimization%20of%20shield%20tunneling%20parameters%20under%20controlled%20surface%20settlements&rft.btitle=Expanding%20Underground%20-%20Knowledge%20and%20Passion%20to%20Make%20a%20Positive%20Impact%20on%20the%20World&rft.au=Jongpradist,%20P.&rft.date=2023&rft.spage=2717&rft.epage=2724&rft.pages=2717-2724&rft_id=info:doi/10.1201/9781003348030-327&rft_dat=%3Cproquest_infor%3EEBC7245327_339_3907%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000957822&rft.eisbn_list=9781000957839&rft.eisbn_list=1003348033&rft.eisbn_list=1000957829&rft.eisbn_list=9781003348030&rft.eisbn_list=1000957837&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7245327_339_3907&rft_id=info:pmid/&rfr_iscdi=true |