Optimization of shield tunneling parameters under controlled surface settlements

The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jongpradist, P., Wainiphithapong, S., Phutthananon, C.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2724
container_issue
container_start_page 2717
container_title
container_volume
creator Jongpradist, P.
Wainiphithapong, S.
Phutthananon, C.
description The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.
doi_str_mv 10.1201/9781003348030-327
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7245327_339_3907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7245327_339_3907</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2257-240da0bdfdac3b61031d9e60f38764a3cd21f9b2c24a11461a7291bf0dc1b4713</originalsourceid><addsrcrecordid>eNpVkMtOxCAYhXGhUcd5AHe8QJVLW8rSTLxMMokudE0oFwelUIFq9OltM25c_cn5c76cfABcYnSFCcLXnHUYIUrrDlFUUcKOwPqQId6wjpATcI4p6zglvOlOwTrnt_lHeNtgRs7A0-NY3OB-ZHExwGhh3jvjNSxTCMa78ApHmeRgikkZTkGbBFUMJUXvjYZ5SlYqA7MpxZvBhJIvwLGVPpv1312Bl7vb581DtXu8325udpUjpGEVqZGWqNdWS0X7FiOKNTctsrRjbS2p0gRb3hNFaolx3WLJCMe9RVrhvmaYrkBz4I4pfkwmF2H6GN_VvCFJr_ZyXCYLRupmtiIo5YJyxObe9tBzwcY0yK-YvBZFfvuYbJJBubxwssBILIbFP8NiYX3O4NkWob-p-XNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7245327_339_3907</pqid></control><display><type>book_chapter</type><title>Optimization of shield tunneling parameters under controlled surface settlements</title><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C.</creator><contributor>Benardos, Andreas ; Anagnostou, Georgios ; Marinos, Vassilis P.</contributor><creatorcontrib>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C. ; Benardos, Andreas ; Anagnostou, Georgios ; Marinos, Vassilis P.</creatorcontrib><description>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</description><edition>1</edition><identifier>EISBN: 9781000957822</identifier><identifier>EISBN: 9781000957839</identifier><identifier>EISBN: 1003348033</identifier><identifier>EISBN: 1000957829</identifier><identifier>EISBN: 9781003348030</identifier><identifier>EISBN: 1000957837</identifier><identifier>DOI: 10.1201/9781003348030-327</identifier><identifier>OCLC: 1378932958</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World, 2023, p.2717-2724</ispartof><rights>2023 Taylor &amp; Francis Group, London, UK</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7245327-l.jpg</thumbnail><link.rule.ids>775,776,780,789,24760,27902</link.rule.ids></links><search><contributor>Benardos, Andreas</contributor><contributor>Anagnostou, Georgios</contributor><contributor>Marinos, Vassilis P.</contributor><creatorcontrib>Jongpradist, P.</creatorcontrib><creatorcontrib>Wainiphithapong, S.</creatorcontrib><creatorcontrib>Phutthananon, C.</creatorcontrib><title>Optimization of shield tunneling parameters under controlled surface settlements</title><title>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World</title><description>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</description><isbn>9781000957822</isbn><isbn>9781000957839</isbn><isbn>1003348033</isbn><isbn>1000957829</isbn><isbn>9781003348030</isbn><isbn>1000957837</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkMtOxCAYhXGhUcd5AHe8QJVLW8rSTLxMMokudE0oFwelUIFq9OltM25c_cn5c76cfABcYnSFCcLXnHUYIUrrDlFUUcKOwPqQId6wjpATcI4p6zglvOlOwTrnt_lHeNtgRs7A0-NY3OB-ZHExwGhh3jvjNSxTCMa78ApHmeRgikkZTkGbBFUMJUXvjYZ5SlYqA7MpxZvBhJIvwLGVPpv1312Bl7vb581DtXu8325udpUjpGEVqZGWqNdWS0X7FiOKNTctsrRjbS2p0gRb3hNFaolx3WLJCMe9RVrhvmaYrkBz4I4pfkwmF2H6GN_VvCFJr_ZyXCYLRupmtiIo5YJyxObe9tBzwcY0yK-YvBZFfvuYbJJBubxwssBILIbFP8NiYX3O4NkWob-p-XNE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Jongpradist, P.</creator><creator>Wainiphithapong, S.</creator><creator>Phutthananon, C.</creator><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Optimization of shield tunneling parameters under controlled surface settlements</title><author>Jongpradist, P. ; Wainiphithapong, S. ; Phutthananon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2257-240da0bdfdac3b61031d9e60f38764a3cd21f9b2c24a11461a7291bf0dc1b4713</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jongpradist, P.</creatorcontrib><creatorcontrib>Wainiphithapong, S.</creatorcontrib><creatorcontrib>Phutthananon, C.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jongpradist, P.</au><au>Wainiphithapong, S.</au><au>Phutthananon, C.</au><au>Benardos, Andreas</au><au>Anagnostou, Georgios</au><au>Marinos, Vassilis P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimization of shield tunneling parameters under controlled surface settlements</atitle><btitle>Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World</btitle><date>2023</date><risdate>2023</risdate><spage>2717</spage><epage>2724</epage><pages>2717-2724</pages><eisbn>9781000957822</eisbn><eisbn>9781000957839</eisbn><eisbn>1003348033</eisbn><eisbn>1000957829</eisbn><eisbn>9781003348030</eisbn><eisbn>1000957837</eisbn><abstract>The construction of the tunnel usually leads to settlement which normally depends on the tunnel geometries, geological condition and tunnel construction parameters. The tunnel construction rate commonly decrease with more strict value of controlled surface settlement, resulting in an increase of time and budget of tunnel construction. This study develops an approach to determine the optimal tunneling parameters using genetic algorithm (GA) with varying allowable surface settlements incorporated with the artificial neural network (ANN). The ANN is used to construct prediction models of surface settlement and tunnel construction rate. In this study, the MRTA Blue Line data are used to train the ANN and used as case study for determining optimal tunnel construction parameters. The results demonstrates that the approach of combination of ANN and GA can be an efficient tool for application in tunnel construction. With the data of MRTA blue line, to obtain the maximum construction rate, the penetration rate and grouting pressure have to change significantly with the variation of allowable settlement.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003348030-327</doi><oclcid>1378932958</oclcid><tpages>8</tpages><edition>1</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISBN: 9781000957822
ispartof Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World, 2023, p.2717-2724
issn
language eng
recordid cdi_proquest_ebookcentralchapters_7245327_339_3907
source OAPEN; DOAB: Directory of Open Access Books
title Optimization of shield tunneling parameters under controlled surface settlements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimization%20of%20shield%20tunneling%20parameters%20under%20controlled%20surface%20settlements&rft.btitle=Expanding%20Underground%20-%20Knowledge%20and%20Passion%20to%20Make%20a%20Positive%20Impact%20on%20the%20World&rft.au=Jongpradist,%20P.&rft.date=2023&rft.spage=2717&rft.epage=2724&rft.pages=2717-2724&rft_id=info:doi/10.1201/9781003348030-327&rft_dat=%3Cproquest_infor%3EEBC7245327_339_3907%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000957822&rft.eisbn_list=9781000957839&rft.eisbn_list=1003348033&rft.eisbn_list=1000957829&rft.eisbn_list=9781003348030&rft.eisbn_list=1000957837&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7245327_339_3907&rft_id=info:pmid/&rfr_iscdi=true