Stochastic Analysis
In general, sources of uncertainties in engineering analysis problems are broadly divided into four; physical uncertainties, model uncertainties, human error, and estimation error. Human errors represent the error involves in the stage of design, construction or operation. Finally, estimation errors...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 83 |
container_title | |
container_volume | 1 |
creator | Ganguli, Ranjan Adhikari, Sondipon Chakraborty, Souvik Ganguli, Mrittika |
description | In general, sources of uncertainties in engineering analysis problems are broadly divided into four; physical uncertainties, model uncertainties, human error, and estimation error. Human errors represent the error involves in the stage of design, construction or operation. Finally, estimation errors which are statistical errors occur due to fluctuations in measurements, sampling and predictions. Simulation methods calculate the failure probability by employing sampling and estimation. The techniques work well with both implicit as well as explicit functions. The most popular method for reliability analysis is perhaps the Direct Monte Carlo simulation (MCS). MCS is a widely used method for computing multivariate integral in statistical physics. The overarching goal in engineering is to design a system/structure that is economical and safe. In reliability-based design optimization, the goal is to ensure that the optimized system is reliable enough. As a consequence, robust design optimization is computationally expensive. |
doi_str_mv | 10.1201/9781003268048-4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7221181_58_96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7221181_58_96</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1484-15da0d687bd7f676d12aaafcc51beac4c949c4b0efa8b8aa8666e757b9cdc2e33</originalsourceid><addsrcrecordid>eNpVkDFPwzAQhY0QCCiZGFj5AwGf7diXsaqgIFViAGbr4jgiEOJiB1D_fV3KwnQ6vXuf7j3GLoFfg-BwUxsEzqXQyBWW6oCd5ZWjqKWpDlnxK0shQGrBj7MojVKSV4AnrEjpLd8K1NwoOGUXT1Nwr5Sm3l3NRxo2qU_n7KijIfnib87Yy93t8-K-XD0uHxbzVdmDQlVC1RJvNZqmNZ02ugVBRJ1zFTSenHK1qp1quO8IGyRCrbU3lWlq1zrhpZwxseeuY_j88mmyvgnh3flxijTkr9aTj8manAQQbIW21tm03Jv6sQvxg35CHFo70WYIsYs0uj7tIMkCt7uy7L-yrLLfmdmHUcgt19VdPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7221181_58_96</pqid></control><display><type>book_chapter</type><title>Stochastic Analysis</title><source>Ebook Central Perpetual and DDA</source><creator>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</creator><creatorcontrib>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</creatorcontrib><description>In general, sources of uncertainties in engineering analysis problems are broadly divided into four; physical uncertainties, model uncertainties, human error, and estimation error. Human errors represent the error involves in the stage of design, construction or operation. Finally, estimation errors which are statistical errors occur due to fluctuations in measurements, sampling and predictions. Simulation methods calculate the failure probability by employing sampling and estimation. The techniques work well with both implicit as well as explicit functions. The most popular method for reliability analysis is perhaps the Direct Monte Carlo simulation (MCS). MCS is a widely used method for computing multivariate integral in statistical physics. The overarching goal in engineering is to design a system/structure that is economical and safe. In reliability-based design optimization, the goal is to ensure that the optimized system is reliable enough. As a consequence, robust design optimization is computationally expensive.</description><edition>1</edition><identifier>ISBN: 9781032213620</identifier><identifier>ISBN: 1032213639</identifier><identifier>ISBN: 1032213620</identifier><identifier>ISBN: 9781032213637</identifier><identifier>EISBN: 1000829375</identifier><identifier>EISBN: 9781003268048</identifier><identifier>EISBN: 1000829294</identifier><identifier>EISBN: 9781000829297</identifier><identifier>EISBN: 1003268048</identifier><identifier>EISBN: 9781000829372</identifier><identifier>DOI: 10.1201/9781003268048-4</identifier><identifier>OCLC: 1374430518</identifier><identifier>LCCallNum: QA76.9.C65 G364 2023</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Digital Twin, 2023, Vol.1, p.83-90</ispartof><rights>2023 Ranjan Ganguli, Sondipon Adhikari, Souvik Chakraborty and Mrittika Ganguli</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7221181-l.jpg</thumbnail><link.rule.ids>780,781,785,794,27927</link.rule.ids></links><search><creatorcontrib>Ganguli, Ranjan</creatorcontrib><creatorcontrib>Adhikari, Sondipon</creatorcontrib><creatorcontrib>Chakraborty, Souvik</creatorcontrib><creatorcontrib>Ganguli, Mrittika</creatorcontrib><title>Stochastic Analysis</title><title>Digital Twin</title><description>In general, sources of uncertainties in engineering analysis problems are broadly divided into four; physical uncertainties, model uncertainties, human error, and estimation error. Human errors represent the error involves in the stage of design, construction or operation. Finally, estimation errors which are statistical errors occur due to fluctuations in measurements, sampling and predictions. Simulation methods calculate the failure probability by employing sampling and estimation. The techniques work well with both implicit as well as explicit functions. The most popular method for reliability analysis is perhaps the Direct Monte Carlo simulation (MCS). MCS is a widely used method for computing multivariate integral in statistical physics. The overarching goal in engineering is to design a system/structure that is economical and safe. In reliability-based design optimization, the goal is to ensure that the optimized system is reliable enough. As a consequence, robust design optimization is computationally expensive.</description><isbn>9781032213620</isbn><isbn>1032213639</isbn><isbn>1032213620</isbn><isbn>9781032213637</isbn><isbn>1000829375</isbn><isbn>9781003268048</isbn><isbn>1000829294</isbn><isbn>9781000829297</isbn><isbn>1003268048</isbn><isbn>9781000829372</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDFPwzAQhY0QCCiZGFj5AwGf7diXsaqgIFViAGbr4jgiEOJiB1D_fV3KwnQ6vXuf7j3GLoFfg-BwUxsEzqXQyBWW6oCd5ZWjqKWpDlnxK0shQGrBj7MojVKSV4AnrEjpLd8K1NwoOGUXT1Nwr5Sm3l3NRxo2qU_n7KijIfnib87Yy93t8-K-XD0uHxbzVdmDQlVC1RJvNZqmNZ02ugVBRJ1zFTSenHK1qp1quO8IGyRCrbU3lWlq1zrhpZwxseeuY_j88mmyvgnh3flxijTkr9aTj8manAQQbIW21tm03Jv6sQvxg35CHFo70WYIsYs0uj7tIMkCt7uy7L-yrLLfmdmHUcgt19VdPg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ganguli, Ranjan</creator><creator>Adhikari, Sondipon</creator><creator>Chakraborty, Souvik</creator><creator>Ganguli, Mrittika</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Stochastic Analysis</title><author>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1484-15da0d687bd7f676d12aaafcc51beac4c949c4b0efa8b8aa8666e757b9cdc2e33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ganguli, Ranjan</creatorcontrib><creatorcontrib>Adhikari, Sondipon</creatorcontrib><creatorcontrib>Chakraborty, Souvik</creatorcontrib><creatorcontrib>Ganguli, Mrittika</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguli, Ranjan</au><au>Adhikari, Sondipon</au><au>Chakraborty, Souvik</au><au>Ganguli, Mrittika</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Stochastic Analysis</atitle><btitle>Digital Twin</btitle><date>2023</date><risdate>2023</risdate><volume>1</volume><spage>83</spage><epage>90</epage><pages>83-90</pages><isbn>9781032213620</isbn><isbn>1032213639</isbn><isbn>1032213620</isbn><isbn>9781032213637</isbn><eisbn>1000829375</eisbn><eisbn>9781003268048</eisbn><eisbn>1000829294</eisbn><eisbn>9781000829297</eisbn><eisbn>1003268048</eisbn><eisbn>9781000829372</eisbn><abstract>In general, sources of uncertainties in engineering analysis problems are broadly divided into four; physical uncertainties, model uncertainties, human error, and estimation error. Human errors represent the error involves in the stage of design, construction or operation. Finally, estimation errors which are statistical errors occur due to fluctuations in measurements, sampling and predictions. Simulation methods calculate the failure probability by employing sampling and estimation. The techniques work well with both implicit as well as explicit functions. The most popular method for reliability analysis is perhaps the Direct Monte Carlo simulation (MCS). MCS is a widely used method for computing multivariate integral in statistical physics. The overarching goal in engineering is to design a system/structure that is economical and safe. In reliability-based design optimization, the goal is to ensure that the optimized system is reliable enough. As a consequence, robust design optimization is computationally expensive.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003268048-4</doi><oclcid>1374430518</oclcid><tpages>8</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781032213620 |
ispartof | Digital Twin, 2023, Vol.1, p.83-90 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_7221181_58_96 |
source | Ebook Central Perpetual and DDA |
title | Stochastic Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Stochastic%20Analysis&rft.btitle=Digital%20Twin&rft.au=Ganguli,%20Ranjan&rft.date=2023&rft.volume=1&rft.spage=83&rft.epage=90&rft.pages=83-90&rft.isbn=9781032213620&rft.isbn_list=1032213639&rft.isbn_list=1032213620&rft.isbn_list=9781032213637&rft_id=info:doi/10.1201/9781003268048-4&rft_dat=%3Cproquest_infor%3EEBC7221181_58_96%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1000829375&rft.eisbn_list=9781003268048&rft.eisbn_list=1000829294&rft.eisbn_list=9781000829297&rft.eisbn_list=1003268048&rft.eisbn_list=9781000829372&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7221181_58_96&rft_id=info:pmid/&rfr_iscdi=true |