Dynamic Systems

This chapter discusses dynamics of single and multiple degrees of freedom undamped and viscously damped systems. It considers single-degree-of-freedom viscously damped systems. The chapter discusses dynamics of multiple-degree-of-freedom undamped systems. It introduces concepts of natural frequencie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ganguli, Ranjan, Adhikari, Sondipon, Chakraborty, Souvik, Ganguli, Mrittika
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 35
container_title
container_volume 1
creator Ganguli, Ranjan
Adhikari, Sondipon
Chakraborty, Souvik
Ganguli, Mrittika
description This chapter discusses dynamics of single and multiple degrees of freedom undamped and viscously damped systems. It considers single-degree-of-freedom viscously damped systems. The chapter discusses dynamics of multiple-degree-of-freedom undamped systems. It introduces concepts of natural frequencies (eigenvalues) and mode-shapes (eigenvectors). The chapter investigates proportionally damped systems. It considers general non-proportionally damped systems. Equation of motion of a viscously damped system can be obtained from the Lagrange's equation and using the Rayleigh's dissipation function. Caughey and O'Kelly have derived the condition which the system matrices must satisfy so that viscously damped linear systems possess classical normal modes. Dynamic response of proportionally damped systems can be obtained in a similar way to that of undamped systems. Modes of proportionally damped systems preserve the simplicity of the real normal modes as in the undamped case. Dynamic analysis of general viscously damped systems requires the calculation of complex natural frequencies and complex modes.
doi_str_mv 10.1201/9781003268048-3
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7221181_30_48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7221181_30_48</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1483-f17aa784c53b8ee44750b12614cddd5f2ba50c8d3d85cc7fd13c4e4e797d14603</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0QCCgVR678QGDXa8fuERUoSJU4AGfLsR0RSOJiB1D-npRy4bQaze5bzTB2jnCJHPBqoTQCEC81CF3QHjuZJGi-ICX32fzXJs6RSg6Hk0lKCAKJ-ojNc36bdrkuQQk8Zmc3Y2-7xl08jXkIXT5lB7Vtc5j_zRl7ubt9Xt4X68fVw_J6XTQoNBU1KmuVFk5SpUMQQkmokJconPde1ryyEpz25LV0TtUeyYkgglooj6IEmjG-425S_PgMeTChivHdhX5ItnWvdjOElI2aUqBGQ2CmtzO22h01fR1TZ79jar0Z7NjGVCfbuyZvIdkgmG1R5l9RhszXxGxiz-kHT6daaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7221181_30_48</pqid></control><display><type>book_chapter</type><title>Dynamic Systems</title><source>Ebook Central Perpetual and DDA</source><creator>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</creator><creatorcontrib>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</creatorcontrib><description>This chapter discusses dynamics of single and multiple degrees of freedom undamped and viscously damped systems. It considers single-degree-of-freedom viscously damped systems. The chapter discusses dynamics of multiple-degree-of-freedom undamped systems. It introduces concepts of natural frequencies (eigenvalues) and mode-shapes (eigenvectors). The chapter investigates proportionally damped systems. It considers general non-proportionally damped systems. Equation of motion of a viscously damped system can be obtained from the Lagrange's equation and using the Rayleigh's dissipation function. Caughey and O'Kelly have derived the condition which the system matrices must satisfy so that viscously damped linear systems possess classical normal modes. Dynamic response of proportionally damped systems can be obtained in a similar way to that of undamped systems. Modes of proportionally damped systems preserve the simplicity of the real normal modes as in the undamped case. Dynamic analysis of general viscously damped systems requires the calculation of complex natural frequencies and complex modes.</description><edition>1</edition><identifier>ISBN: 9781032213620</identifier><identifier>ISBN: 1032213639</identifier><identifier>ISBN: 1032213620</identifier><identifier>ISBN: 9781032213637</identifier><identifier>EISBN: 1000829375</identifier><identifier>EISBN: 9781003268048</identifier><identifier>EISBN: 1000829294</identifier><identifier>EISBN: 9781000829297</identifier><identifier>EISBN: 1003268048</identifier><identifier>EISBN: 9781000829372</identifier><identifier>DOI: 10.1201/9781003268048-3</identifier><identifier>OCLC: 1374430518</identifier><identifier>LCCallNum: QA76.9.C65 G364 2023</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Digital Twin, 2023, Vol.1, p.35-82</ispartof><rights>2023 Ranjan Ganguli, Sondipon Adhikari, Souvik Chakraborty and Mrittika Ganguli</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7221181-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><creatorcontrib>Ganguli, Ranjan</creatorcontrib><creatorcontrib>Adhikari, Sondipon</creatorcontrib><creatorcontrib>Chakraborty, Souvik</creatorcontrib><creatorcontrib>Ganguli, Mrittika</creatorcontrib><title>Dynamic Systems</title><title>Digital Twin</title><description>This chapter discusses dynamics of single and multiple degrees of freedom undamped and viscously damped systems. It considers single-degree-of-freedom viscously damped systems. The chapter discusses dynamics of multiple-degree-of-freedom undamped systems. It introduces concepts of natural frequencies (eigenvalues) and mode-shapes (eigenvectors). The chapter investigates proportionally damped systems. It considers general non-proportionally damped systems. Equation of motion of a viscously damped system can be obtained from the Lagrange's equation and using the Rayleigh's dissipation function. Caughey and O'Kelly have derived the condition which the system matrices must satisfy so that viscously damped linear systems possess classical normal modes. Dynamic response of proportionally damped systems can be obtained in a similar way to that of undamped systems. Modes of proportionally damped systems preserve the simplicity of the real normal modes as in the undamped case. Dynamic analysis of general viscously damped systems requires the calculation of complex natural frequencies and complex modes.</description><isbn>9781032213620</isbn><isbn>1032213639</isbn><isbn>1032213620</isbn><isbn>9781032213637</isbn><isbn>1000829375</isbn><isbn>9781003268048</isbn><isbn>1000829294</isbn><isbn>9781000829297</isbn><isbn>1003268048</isbn><isbn>9781000829372</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkMFOwzAQRI0QCCgVR678QGDXa8fuERUoSJU4AGfLsR0RSOJiB1D-npRy4bQaze5bzTB2jnCJHPBqoTQCEC81CF3QHjuZJGi-ICX32fzXJs6RSg6Hk0lKCAKJ-ojNc36bdrkuQQk8Zmc3Y2-7xl08jXkIXT5lB7Vtc5j_zRl7ubt9Xt4X68fVw_J6XTQoNBU1KmuVFk5SpUMQQkmokJconPde1ryyEpz25LV0TtUeyYkgglooj6IEmjG-425S_PgMeTChivHdhX5ItnWvdjOElI2aUqBGQ2CmtzO22h01fR1TZ79jar0Z7NjGVCfbuyZvIdkgmG1R5l9RhszXxGxiz-kHT6daaQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ganguli, Ranjan</creator><creator>Adhikari, Sondipon</creator><creator>Chakraborty, Souvik</creator><creator>Ganguli, Mrittika</creator><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Dynamic Systems</title><author>Ganguli, Ranjan ; Adhikari, Sondipon ; Chakraborty, Souvik ; Ganguli, Mrittika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1483-f17aa784c53b8ee44750b12614cddd5f2ba50c8d3d85cc7fd13c4e4e797d14603</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ganguli, Ranjan</creatorcontrib><creatorcontrib>Adhikari, Sondipon</creatorcontrib><creatorcontrib>Chakraborty, Souvik</creatorcontrib><creatorcontrib>Ganguli, Mrittika</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguli, Ranjan</au><au>Adhikari, Sondipon</au><au>Chakraborty, Souvik</au><au>Ganguli, Mrittika</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Dynamic Systems</atitle><btitle>Digital Twin</btitle><date>2023</date><risdate>2023</risdate><volume>1</volume><spage>35</spage><epage>82</epage><pages>35-82</pages><isbn>9781032213620</isbn><isbn>1032213639</isbn><isbn>1032213620</isbn><isbn>9781032213637</isbn><eisbn>1000829375</eisbn><eisbn>9781003268048</eisbn><eisbn>1000829294</eisbn><eisbn>9781000829297</eisbn><eisbn>1003268048</eisbn><eisbn>9781000829372</eisbn><abstract>This chapter discusses dynamics of single and multiple degrees of freedom undamped and viscously damped systems. It considers single-degree-of-freedom viscously damped systems. The chapter discusses dynamics of multiple-degree-of-freedom undamped systems. It introduces concepts of natural frequencies (eigenvalues) and mode-shapes (eigenvectors). The chapter investigates proportionally damped systems. It considers general non-proportionally damped systems. Equation of motion of a viscously damped system can be obtained from the Lagrange's equation and using the Rayleigh's dissipation function. Caughey and O'Kelly have derived the condition which the system matrices must satisfy so that viscously damped linear systems possess classical normal modes. Dynamic response of proportionally damped systems can be obtained in a similar way to that of undamped systems. Modes of proportionally damped systems preserve the simplicity of the real normal modes as in the undamped case. Dynamic analysis of general viscously damped systems requires the calculation of complex natural frequencies and complex modes.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003268048-3</doi><oclcid>1374430518</oclcid><tpages>48</tpages><edition>1</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 9781032213620
ispartof Digital Twin, 2023, Vol.1, p.35-82
issn
language eng
recordid cdi_proquest_ebookcentralchapters_7221181_30_48
source Ebook Central Perpetual and DDA
title Dynamic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Dynamic%20Systems&rft.btitle=Digital%20Twin&rft.au=Ganguli,%20Ranjan&rft.date=2023&rft.volume=1&rft.spage=35&rft.epage=82&rft.pages=35-82&rft.isbn=9781032213620&rft.isbn_list=1032213639&rft.isbn_list=1032213620&rft.isbn_list=9781032213637&rft_id=info:doi/10.1201/9781003268048-3&rft_dat=%3Cproquest_infor%3EEBC7221181_30_48%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1000829375&rft.eisbn_list=9781003268048&rft.eisbn_list=1000829294&rft.eisbn_list=9781000829297&rft.eisbn_list=1003268048&rft.eisbn_list=9781000829372&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7221181_30_48&rft_id=info:pmid/&rfr_iscdi=true