Analysis of Encrypted Network Traffic using Machine Learning Models

Traffic classification is essential for identifying normal behavior from diverse traffic. Modern applications that contribute to half of the world's traffic generate encrypted traffic to protect the data between clients and servers. Encryption is required to prevent adversaries from accessing p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhandari, Aradhita, Cherukuri, Aswani Kumar, Ikram, Sumaiya Thaseen
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 71
container_title
container_volume
creator Bhandari, Aradhita
Cherukuri, Aswani Kumar
Ikram, Sumaiya Thaseen
description Traffic classification is essential for identifying normal behavior from diverse traffic. Modern applications that contribute to half of the world's traffic generate encrypted traffic to protect the data between clients and servers. Encryption is required to prevent adversaries from accessing private information such as user behavior patterns, application data, and passwords. Ideally, this encrypted traffic would be legitimate; however, in some cases, the encrypted traffic can conceal malicious software like viruses, worms, and Trojans. Therefore, to secure our networks, large-scale encrypted traffic analysis is required in real time to identify abnormal patterns as soon as possible. This chapter will discuss various unsupervised, supervised, and semi-supervised learning techniques deployed to analyze encrypted traffic. This paper presents the first such analysis for encrypted network data to the best of our knowledge. The learning models analyzed are K-means clustering, random forest, label propagation, and AdaBoost classifiers. Experimental analysis is performed on UNSW-NB15 encrypted traffic datasets.
doi_str_mv 10.1201/9781003373384-5
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7215899_80_102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7215899_80_102</sourcerecordid><originalsourceid>FETCH-LOGICAL-i178t-9681f8a9cde8848ee2ebc5fa0ec0de69a23632269daa32dc01fbbc954361f11a3</originalsourceid><addsrcrecordid>eNpVkEFPAjEQhWuMRkXOXvcPoJ2W3bZHQhBNUC94bma7rVTWFttFw793AS-cJvNm3peZR8gd0HtgFB6UkEAp54JzOR6VZ2R4opwfeikEZUwISS_JDfB-rioB1RUZ5vxJKWWyFMDpNZlOAra77HMRXTELJu02nW2KV9v9xrQulgmd86bYZh8-ihc0Kx9ssbCYwkGIjW3zLblw2GY7_K8D8v44W06fRou3-fN0shh5ELIbqUqCk6hMY6UcS2uZrU3pkFpDG1spZLzijFWqQeSsMRRcXRtVjnkFDgD5gPAjd5Pi99bmTts6xrWxoUvYmhX2p6esBYNSKqUl1UBZ75ofXT64mL6w_6ttdIe7NiaXMBif95TcL-t9wPokTl3qnx7qY2D8D-Iub00</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7215899_80_102</pqid></control><display><type>book_chapter</type><title>Analysis of Encrypted Network Traffic using Machine Learning Models</title><source>Ebook Central Perpetual and DDA</source><creator>Bhandari, Aradhita ; Cherukuri, Aswani Kumar ; Ikram, Sumaiya Thaseen</creator><contributor>Tawalbeh, Loai ; Maleh, Yassine ; Romdhani, Imed ; Alazab, Mamoun ; Tawalbeh, Loai ; Maleh, Yassine ; Romdhani, Imed ; Alazab, Mamoun</contributor><creatorcontrib>Bhandari, Aradhita ; Cherukuri, Aswani Kumar ; Ikram, Sumaiya Thaseen ; Tawalbeh, Loai ; Maleh, Yassine ; Romdhani, Imed ; Alazab, Mamoun ; Tawalbeh, Loai ; Maleh, Yassine ; Romdhani, Imed ; Alazab, Mamoun</creatorcontrib><description>Traffic classification is essential for identifying normal behavior from diverse traffic. Modern applications that contribute to half of the world's traffic generate encrypted traffic to protect the data between clients and servers. Encryption is required to prevent adversaries from accessing private information such as user behavior patterns, application data, and passwords. Ideally, this encrypted traffic would be legitimate; however, in some cases, the encrypted traffic can conceal malicious software like viruses, worms, and Trojans. Therefore, to secure our networks, large-scale encrypted traffic analysis is required in real time to identify abnormal patterns as soon as possible. This chapter will discuss various unsupervised, supervised, and semi-supervised learning techniques deployed to analyze encrypted traffic. This paper presents the first such analysis for encrypted network data to the best of our knowledge. The learning models analyzed are K-means clustering, random forest, label propagation, and AdaBoost classifiers. Experimental analysis is performed on UNSW-NB15 encrypted traffic datasets.</description><edition>1</edition><identifier>ISBN: 9788770227780</identifier><identifier>ISBN: 8770227780</identifier><identifier>EISBN: 9781003373384</identifier><identifier>EISBN: 1003373380</identifier><identifier>EISBN: 9781000846713</identifier><identifier>EISBN: 1000846695</identifier><identifier>EISBN: 9781000846690</identifier><identifier>EISBN: 1000846717</identifier><identifier>DOI: 10.1201/9781003373384-5</identifier><identifier>OCLC: 1381096716</identifier><identifier>LCCallNum: Q335 .B54 2022</identifier><language>eng</language><publisher>United Kingdom: River Publishers</publisher><ispartof>Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence, 2022, p.71-86</ispartof><rights>2022 River Publishers.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7215899-l.jpg</thumbnail><link.rule.ids>776,777,781,790,27906</link.rule.ids></links><search><contributor>Tawalbeh, Loai</contributor><contributor>Maleh, Yassine</contributor><contributor>Romdhani, Imed</contributor><contributor>Alazab, Mamoun</contributor><contributor>Tawalbeh, Loai</contributor><contributor>Maleh, Yassine</contributor><contributor>Romdhani, Imed</contributor><contributor>Alazab, Mamoun</contributor><creatorcontrib>Bhandari, Aradhita</creatorcontrib><creatorcontrib>Cherukuri, Aswani Kumar</creatorcontrib><creatorcontrib>Ikram, Sumaiya Thaseen</creatorcontrib><title>Analysis of Encrypted Network Traffic using Machine Learning Models</title><title>Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence</title><description>Traffic classification is essential for identifying normal behavior from diverse traffic. Modern applications that contribute to half of the world's traffic generate encrypted traffic to protect the data between clients and servers. Encryption is required to prevent adversaries from accessing private information such as user behavior patterns, application data, and passwords. Ideally, this encrypted traffic would be legitimate; however, in some cases, the encrypted traffic can conceal malicious software like viruses, worms, and Trojans. Therefore, to secure our networks, large-scale encrypted traffic analysis is required in real time to identify abnormal patterns as soon as possible. This chapter will discuss various unsupervised, supervised, and semi-supervised learning techniques deployed to analyze encrypted traffic. This paper presents the first such analysis for encrypted network data to the best of our knowledge. The learning models analyzed are K-means clustering, random forest, label propagation, and AdaBoost classifiers. Experimental analysis is performed on UNSW-NB15 encrypted traffic datasets.</description><isbn>9788770227780</isbn><isbn>8770227780</isbn><isbn>9781003373384</isbn><isbn>1003373380</isbn><isbn>9781000846713</isbn><isbn>1000846695</isbn><isbn>9781000846690</isbn><isbn>1000846717</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkEFPAjEQhWuMRkXOXvcPoJ2W3bZHQhBNUC94bma7rVTWFttFw793AS-cJvNm3peZR8gd0HtgFB6UkEAp54JzOR6VZ2R4opwfeikEZUwISS_JDfB-rioB1RUZ5vxJKWWyFMDpNZlOAra77HMRXTELJu02nW2KV9v9xrQulgmd86bYZh8-ihc0Kx9ssbCYwkGIjW3zLblw2GY7_K8D8v44W06fRou3-fN0shh5ELIbqUqCk6hMY6UcS2uZrU3pkFpDG1spZLzijFWqQeSsMRRcXRtVjnkFDgD5gPAjd5Pi99bmTts6xrWxoUvYmhX2p6esBYNSKqUl1UBZ75ofXT64mL6w_6ttdIe7NiaXMBif95TcL-t9wPokTl3qnx7qY2D8D-Iub00</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bhandari, Aradhita</creator><creator>Cherukuri, Aswani Kumar</creator><creator>Ikram, Sumaiya Thaseen</creator><general>River Publishers</general><scope>FFUUA</scope></search><sort><creationdate>2022</creationdate><title>Analysis of Encrypted Network Traffic using Machine Learning Models</title><author>Bhandari, Aradhita ; Cherukuri, Aswani Kumar ; Ikram, Sumaiya Thaseen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i178t-9681f8a9cde8848ee2ebc5fa0ec0de69a23632269daa32dc01fbbc954361f11a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, Aradhita</creatorcontrib><creatorcontrib>Cherukuri, Aswani Kumar</creatorcontrib><creatorcontrib>Ikram, Sumaiya Thaseen</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, Aradhita</au><au>Cherukuri, Aswani Kumar</au><au>Ikram, Sumaiya Thaseen</au><au>Tawalbeh, Loai</au><au>Maleh, Yassine</au><au>Romdhani, Imed</au><au>Alazab, Mamoun</au><au>Tawalbeh, Loai</au><au>Maleh, Yassine</au><au>Romdhani, Imed</au><au>Alazab, Mamoun</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Analysis of Encrypted Network Traffic using Machine Learning Models</atitle><btitle>Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence</btitle><date>2022</date><risdate>2022</risdate><spage>71</spage><epage>86</epage><pages>71-86</pages><isbn>9788770227780</isbn><isbn>8770227780</isbn><eisbn>9781003373384</eisbn><eisbn>1003373380</eisbn><eisbn>9781000846713</eisbn><eisbn>1000846695</eisbn><eisbn>9781000846690</eisbn><eisbn>1000846717</eisbn><abstract>Traffic classification is essential for identifying normal behavior from diverse traffic. Modern applications that contribute to half of the world's traffic generate encrypted traffic to protect the data between clients and servers. Encryption is required to prevent adversaries from accessing private information such as user behavior patterns, application data, and passwords. Ideally, this encrypted traffic would be legitimate; however, in some cases, the encrypted traffic can conceal malicious software like viruses, worms, and Trojans. Therefore, to secure our networks, large-scale encrypted traffic analysis is required in real time to identify abnormal patterns as soon as possible. This chapter will discuss various unsupervised, supervised, and semi-supervised learning techniques deployed to analyze encrypted traffic. This paper presents the first such analysis for encrypted network data to the best of our knowledge. The learning models analyzed are K-means clustering, random forest, label propagation, and AdaBoost classifiers. Experimental analysis is performed on UNSW-NB15 encrypted traffic datasets.</abstract><cop>United Kingdom</cop><pub>River Publishers</pub><doi>10.1201/9781003373384-5</doi><oclcid>1381096716</oclcid><tpages>16</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9788770227780
ispartof Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence, 2022, p.71-86
issn
language eng
recordid cdi_proquest_ebookcentralchapters_7215899_80_102
source Ebook Central Perpetual and DDA
title Analysis of Encrypted Network Traffic using Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Analysis%20of%20Encrypted%20Network%20Traffic%20using%20Machine%20Learning%20Models&rft.btitle=Big%20Data%20Analytics%20and%20Intelligent%20Systems%20for%20Cyber%20Threat%20Intelligence&rft.au=Bhandari,%20Aradhita&rft.date=2022&rft.spage=71&rft.epage=86&rft.pages=71-86&rft.isbn=9788770227780&rft.isbn_list=8770227780&rft_id=info:doi/10.1201/9781003373384-5&rft_dat=%3Cproquest_infor%3EEBC7215899_80_102%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781003373384&rft.eisbn_list=1003373380&rft.eisbn_list=9781000846713&rft.eisbn_list=1000846695&rft.eisbn_list=9781000846690&rft.eisbn_list=1000846717&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7215899_80_102&rft_id=info:pmid/&rfr_iscdi=true