Approximation Methods
Compared to the simplified one-dimensional systems or even to the one electron atom, multi-electron atoms are quite complicated. It is possible to treat them in a reasonable way using a succession of approximations. Only the most important interactions experienced by the atomic electrons are treated...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | |
container_volume | |
creator | Rao, M. S. Prasada |
description | Compared to the simplified one-dimensional systems or even to the one electron atom, multi-electron atoms are quite complicated. It is possible to treat them in a reasonable way using a succession of approximations. Only the most important interactions experienced by the atomic electrons are treated in the first approximation, and then the treatment is made more exact in succeeding approximations that take into account the less important interactions. Even in the first approximation we must also consider the coulomb interactions between each electron and all the other electrons in the atom. The time independent Schrodinger equation for the system can be separated into a set of equations, one for each electron, which can be solved without too much difficulty, since each involves the coordinates of a single electron only. |
doi_str_mv | 10.1201/9781003354048-6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7120611_76_114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7120611_76_114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1084-14ad370fbb2ad6c5926a7528fd7616cba5e764ac87498185ccf56a125143c63</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhI0QCCg9Iq78gcCuH2vnWFVQkIo4wN1yHEcNpHGxw-vfk1KExGm1Gs23O8PYOcIlcsCrUhsEEEJJkKagPXbyt-I-m_7IgksgoeXhKApZcl1ygiM2zfkZALhRpAiO2dlss0nxs127oY39xX0YVrHOp-ygcV0O0985YY8310_z22L5sLibz5ZFi2BkgdLVQkNTVdzV5NV4wmnFTVNrQvKVU0GTdN5oWRo0yvtGkUOuUApPYsLEjjp-8PoW8mBDFeOLD_2QXOdXbjOElK0eMxOi1WRxNE7YYudq-yamtfuIqavt4L66mJrket_mLSVbBLtty_5ry5J9H6FjVi6-AXUfXAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7120611_76_114</pqid></control><display><type>book_chapter</type><title>Approximation Methods</title><source>Ebook Central Perpetual and DDA</source><creator>Rao, M. S. Prasada</creator><creatorcontrib>Rao, M. S. Prasada</creatorcontrib><description>Compared to the simplified one-dimensional systems or even to the one electron atom, multi-electron atoms are quite complicated. It is possible to treat them in a reasonable way using a succession of approximations. Only the most important interactions experienced by the atomic electrons are treated in the first approximation, and then the treatment is made more exact in succeeding approximations that take into account the less important interactions. Even in the first approximation we must also consider the coulomb interactions between each electron and all the other electrons in the atom. The time independent Schrodinger equation for the system can be separated into a set of equations, one for each electron, which can be solved without too much difficulty, since each involves the coordinates of a single electron only.</description><edition>1</edition><identifier>ISBN: 9781032406374</identifier><identifier>ISBN: 1032406372</identifier><identifier>ISBN: 9781032406381</identifier><identifier>ISBN: 1032406380</identifier><identifier>EISBN: 1003354041</identifier><identifier>EISBN: 9781000815689</identifier><identifier>EISBN: 1000815684</identifier><identifier>EISBN: 9781003354048</identifier><identifier>EISBN: 9781000815580</identifier><identifier>EISBN: 1000815587</identifier><identifier>DOI: 10.1201/9781003354048-6</identifier><identifier>OCLC: 1349279260</identifier><identifier>LCCallNum: Z5524.R3 R36 2023</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Quantum Chemistry, 2023, p.101-114</ispartof><rights>2023 BSP Books Pvt. Ltd</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7120611-l.jpg</thumbnail><link.rule.ids>780,781,785,794,27930</link.rule.ids></links><search><creatorcontrib>Rao, M. S. Prasada</creatorcontrib><title>Approximation Methods</title><title>Quantum Chemistry</title><description>Compared to the simplified one-dimensional systems or even to the one electron atom, multi-electron atoms are quite complicated. It is possible to treat them in a reasonable way using a succession of approximations. Only the most important interactions experienced by the atomic electrons are treated in the first approximation, and then the treatment is made more exact in succeeding approximations that take into account the less important interactions. Even in the first approximation we must also consider the coulomb interactions between each electron and all the other electrons in the atom. The time independent Schrodinger equation for the system can be separated into a set of equations, one for each electron, which can be solved without too much difficulty, since each involves the coordinates of a single electron only.</description><isbn>9781032406374</isbn><isbn>1032406372</isbn><isbn>9781032406381</isbn><isbn>1032406380</isbn><isbn>1003354041</isbn><isbn>9781000815689</isbn><isbn>1000815684</isbn><isbn>9781003354048</isbn><isbn>9781000815580</isbn><isbn>1000815587</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkEtPwzAQhI0QCCg9Iq78gcCuH2vnWFVQkIo4wN1yHEcNpHGxw-vfk1KExGm1Gs23O8PYOcIlcsCrUhsEEEJJkKagPXbyt-I-m_7IgksgoeXhKApZcl1ygiM2zfkZALhRpAiO2dlss0nxs127oY39xX0YVrHOp-ygcV0O0985YY8310_z22L5sLibz5ZFi2BkgdLVQkNTVdzV5NV4wmnFTVNrQvKVU0GTdN5oWRo0yvtGkUOuUApPYsLEjjp-8PoW8mBDFeOLD_2QXOdXbjOElK0eMxOi1WRxNE7YYudq-yamtfuIqavt4L66mJrket_mLSVbBLtty_5ry5J9H6FjVi6-AXUfXAA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rao, M. S. Prasada</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Approximation Methods</title><author>Rao, M. S. Prasada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1084-14ad370fbb2ad6c5926a7528fd7616cba5e764ac87498185ccf56a125143c63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rao, M. S. Prasada</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, M. S. Prasada</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Approximation Methods</atitle><btitle>Quantum Chemistry</btitle><date>2023</date><risdate>2023</risdate><spage>101</spage><epage>114</epage><pages>101-114</pages><isbn>9781032406374</isbn><isbn>1032406372</isbn><isbn>9781032406381</isbn><isbn>1032406380</isbn><eisbn>1003354041</eisbn><eisbn>9781000815689</eisbn><eisbn>1000815684</eisbn><eisbn>9781003354048</eisbn><eisbn>9781000815580</eisbn><eisbn>1000815587</eisbn><abstract>Compared to the simplified one-dimensional systems or even to the one electron atom, multi-electron atoms are quite complicated. It is possible to treat them in a reasonable way using a succession of approximations. Only the most important interactions experienced by the atomic electrons are treated in the first approximation, and then the treatment is made more exact in succeeding approximations that take into account the less important interactions. Even in the first approximation we must also consider the coulomb interactions between each electron and all the other electrons in the atom. The time independent Schrodinger equation for the system can be separated into a set of equations, one for each electron, which can be solved without too much difficulty, since each involves the coordinates of a single electron only.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003354048-6</doi><oclcid>1349279260</oclcid><tpages>14</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781032406374 |
ispartof | Quantum Chemistry, 2023, p.101-114 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_7120611_76_114 |
source | Ebook Central Perpetual and DDA |
title | Approximation Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Approximation%20Methods&rft.btitle=Quantum%20Chemistry&rft.au=Rao,%20M.%20S.%20Prasada&rft.date=2023&rft.spage=101&rft.epage=114&rft.pages=101-114&rft.isbn=9781032406374&rft.isbn_list=1032406372&rft.isbn_list=9781032406381&rft.isbn_list=1032406380&rft_id=info:doi/10.1201/9781003354048-6&rft_dat=%3Cproquest_infor%3EEBC7120611_76_114%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=1003354041&rft.eisbn_list=9781000815689&rft.eisbn_list=1000815684&rft.eisbn_list=9781003354048&rft.eisbn_list=9781000815580&rft.eisbn_list=1000815587&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7120611_76_114&rft_id=info:pmid/&rfr_iscdi=true |