BRAINWAY and nano-Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design

Continuing on the theme of the prior chapter, Andreas Andreou provides a number of examples of bio-inspired chip designs, many of which are components in systems that solve complex problems of interest to organizations like DARPA. It also describes three waves of computing that match well with ideas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Andreou, Andreas G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 135
container_title
container_volume
creator Andreou, Andreas G.
description Continuing on the theme of the prior chapter, Andreas Andreou provides a number of examples of bio-inspired chip designs, many of which are components in systems that solve complex problems of interest to organizations like DARPA. It also describes three waves of computing that match well with ideas presented in chapter 1. This chapter addresses major issues in AI system design, such as data movement, energy limited computation, design methodology, and chip architecture. Andreou places particular emphasis on software-architecture-hardware co-design.
doi_str_mv 10.1201/9781003338215-8
format Book Chapter
fullrecord <record><control><sourceid>proquest_knove</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7099429_13_136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7099429_13_136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1416-52de45c79892b297f8122602a64cf060fb236d53a3edd2862a32e3d2235d91d13</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhSOiqLVnr70IXlaTmd1scqxFa7EoiKI9hWySpWu3m5psK_33bqkIwsAwvO_Ng0fIBaPXDCi7kblglCKiAJYl4oCc_Z38kPQ7WeQ5BWCA4rgTMeXIAaU4If0YPymlIDKOlJ6Sy9uX4eTpfTgb6MYOGt34ZFhos44DHcy8ap1p18Gdk6NS19H1f3ePvN3fvY4ekunzeDIaTpOKpYwnGViXZiaXQkIBMi8FA-AUNE9NSTktC0BuM9TorAXBQSM4tACYWckswx7B_d9V8F9rF1vlCu8XxjVt0LWZ61XrQlQ5lTIFqRh2wzvX1d61aPzG1WoVqqUOW_XLq0VLGTx-wAw6dLxHq6b0Yam_faitavW29qEMujFV3AVGxajaVa3-Va2E2nT5lW8AfwAvAm9I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7099429_13_136</pqid></control><display><type>book_chapter</type><title>BRAINWAY and nano-Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design</title><source>Ebook Central Perpetual and DDA</source><creator>Andreou, Andreas G.</creator><contributor>Alarcon, Eduard ; Ziegler, Matthew ; Kumar, Arvind ; Joshi, Rajiv</contributor><creatorcontrib>Andreou, Andreas G. ; Alarcon, Eduard ; Ziegler, Matthew ; Kumar, Arvind ; Joshi, Rajiv</creatorcontrib><description>Continuing on the theme of the prior chapter, Andreas Andreou provides a number of examples of bio-inspired chip designs, many of which are components in systems that solve complex problems of interest to organizations like DARPA. It also describes three waves of computing that match well with ideas presented in chapter 1. This chapter addresses major issues in AI system design, such as data movement, energy limited computation, design methodology, and chip architecture. Andreou places particular emphasis on software-architecture-hardware co-design.</description><edition>1</edition><identifier>ISBN: 9788770221238</identifier><identifier>ISBN: 8770221235</identifier><identifier>EISBN: 1003338216</identifier><identifier>EISBN: 1000792501</identifier><identifier>EISBN: 9781000792508</identifier><identifier>EISBN: 9781003338215</identifier><identifier>EISBN: 1000795829</identifier><identifier>EISBN: 9781000795820</identifier><identifier>EISBN: 1523138793</identifier><identifier>EISBN: 9781523138791</identifier><identifier>DOI: 10.1201/9781003338215-8</identifier><identifier>OCLC: 1346362398</identifier><identifier>LCCallNum: Q335 .J674 2020</identifier><language>eng</language><publisher>United Kingdom: Routledge</publisher><subject>General Engineering &amp; Project Administration ; General References</subject><ispartof>From Artificial Intelligence to Brain Intelligence, 2020, p.135-159</ispartof><rights>2020 River Publishers</rights><rights>2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://content.knovel.com/content/Thumbs/thumb13396.gif</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Alarcon, Eduard</contributor><contributor>Ziegler, Matthew</contributor><contributor>Kumar, Arvind</contributor><contributor>Joshi, Rajiv</contributor><creatorcontrib>Andreou, Andreas G.</creatorcontrib><title>BRAINWAY and nano-Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design</title><title>From Artificial Intelligence to Brain Intelligence</title><description>Continuing on the theme of the prior chapter, Andreas Andreou provides a number of examples of bio-inspired chip designs, many of which are components in systems that solve complex problems of interest to organizations like DARPA. It also describes three waves of computing that match well with ideas presented in chapter 1. This chapter addresses major issues in AI system design, such as data movement, energy limited computation, design methodology, and chip architecture. Andreou places particular emphasis on software-architecture-hardware co-design.</description><subject>General Engineering &amp; Project Administration</subject><subject>General References</subject><isbn>9788770221238</isbn><isbn>8770221235</isbn><isbn>1003338216</isbn><isbn>1000792501</isbn><isbn>9781000792508</isbn><isbn>9781003338215</isbn><isbn>1000795829</isbn><isbn>9781000795820</isbn><isbn>1523138793</isbn><isbn>9781523138791</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkEFLAzEQhSOiqLVnr70IXlaTmd1scqxFa7EoiKI9hWySpWu3m5psK_33bqkIwsAwvO_Ng0fIBaPXDCi7kblglCKiAJYl4oCc_Z38kPQ7WeQ5BWCA4rgTMeXIAaU4If0YPymlIDKOlJ6Sy9uX4eTpfTgb6MYOGt34ZFhos44DHcy8ap1p18Gdk6NS19H1f3ePvN3fvY4ekunzeDIaTpOKpYwnGViXZiaXQkIBMi8FA-AUNE9NSTktC0BuM9TorAXBQSM4tACYWckswx7B_d9V8F9rF1vlCu8XxjVt0LWZ61XrQlQ5lTIFqRh2wzvX1d61aPzG1WoVqqUOW_XLq0VLGTx-wAw6dLxHq6b0Yam_faitavW29qEMujFV3AVGxajaVa3-Va2E2nT5lW8AfwAvAm9I</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Andreou, Andreas G.</creator><general>Routledge</general><general>River Publishers</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>BRAINWAY and nano-Abacus architecture</title><author>Andreou, Andreas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1416-52de45c79892b297f8122602a64cf060fb236d53a3edd2862a32e3d2235d91d13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><topic>General Engineering &amp; Project Administration</topic><topic>General References</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreou, Andreas G.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreou, Andreas G.</au><au>Alarcon, Eduard</au><au>Ziegler, Matthew</au><au>Kumar, Arvind</au><au>Joshi, Rajiv</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>BRAINWAY and nano-Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design</atitle><btitle>From Artificial Intelligence to Brain Intelligence</btitle><date>2020</date><risdate>2020</risdate><spage>135</spage><epage>159</epage><pages>135-159</pages><isbn>9788770221238</isbn><isbn>8770221235</isbn><eisbn>1003338216</eisbn><eisbn>1000792501</eisbn><eisbn>9781000792508</eisbn><eisbn>9781003338215</eisbn><eisbn>1000795829</eisbn><eisbn>9781000795820</eisbn><eisbn>1523138793</eisbn><eisbn>9781523138791</eisbn><abstract>Continuing on the theme of the prior chapter, Andreas Andreou provides a number of examples of bio-inspired chip designs, many of which are components in systems that solve complex problems of interest to organizations like DARPA. It also describes three waves of computing that match well with ideas presented in chapter 1. This chapter addresses major issues in AI system design, such as data movement, energy limited computation, design methodology, and chip architecture. Andreou places particular emphasis on software-architecture-hardware co-design.</abstract><cop>United Kingdom</cop><pub>Routledge</pub><doi>10.1201/9781003338215-8</doi><oclcid>1346362398</oclcid><tpages>25</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9788770221238
ispartof From Artificial Intelligence to Brain Intelligence, 2020, p.135-159
issn
language eng
recordid cdi_proquest_ebookcentralchapters_7099429_13_136
source Ebook Central Perpetual and DDA
subjects General Engineering & Project Administration
General References
title BRAINWAY and nano-Abacus architecture: Brain-inspired Cognitive Computing using Energy Efficient Physical Computational Structures, Algorithms and Architecture Co-Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_knove&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=BRAINWAY%20and%20nano-Abacus%20architecture:%20Brain-inspired%20Cognitive%20Computing%20using%20Energy%20Efficient%20Physical%20Computational%20Structures,%20Algorithms%20and%20Architecture%20Co-Design&rft.btitle=From%20Artificial%20Intelligence%20to%20Brain%20Intelligence&rft.au=Andreou,%20Andreas%20G.&rft.date=2020&rft.spage=135&rft.epage=159&rft.pages=135-159&rft.isbn=9788770221238&rft.isbn_list=8770221235&rft_id=info:doi/10.1201/9781003338215-8&rft_dat=%3Cproquest_knove%3EEBC7099429_13_136%3C/proquest_knove%3E%3Curl%3E%3C/url%3E&rft.eisbn=1003338216&rft.eisbn_list=1000792501&rft.eisbn_list=9781000792508&rft.eisbn_list=9781003338215&rft.eisbn_list=1000795829&rft.eisbn_list=9781000795820&rft.eisbn_list=1523138793&rft.eisbn_list=9781523138791&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7099429_13_136&rft_id=info:pmid/&rfr_iscdi=true