Potential Flow

Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mitescu, Catalin D, Hulin, Jean-Pierre, Petit, Luc, Guyon, Etienne
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mitescu, Catalin D
Hulin, Jean-Pierre
Petit, Luc
Guyon, Etienne
description Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.
doi_str_mv 10.1093/acprof:oso/9780198702443.003.0006
format Book Chapter
fullrecord <record><control><sourceid>proquest_oup_o</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7035676_121_201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>acprof_9780198702443_chapter_6</oup_id><sourcerecordid>EBC4842121_121_201</sourcerecordid><originalsourceid>FETCH-LOGICAL-o213t-7d2c869cb7da4a206f62ae30b5ed44e5a3786358eb214a143cd9e8096be327293</originalsourceid><addsrcrecordid>eNqNkEtLw0AQgFdEsdb4G7x6SDuPfXqTYlUo6EHPyybZ4CO4MUnx75uSonjzMMxh5pvHJ8QlwgLB8TKUbZfqq9SnpTMW0FkDJCUvAHYB-kBkUwGNIVR8KE5_uuhYzBwoI7ViPhFZ37-NCGpkZXkmzh_TED-G19BcrJv0dSaO6tD0MdvnuXhe3zyt7vLNw-396nqTJ0IeclNRabUrC1MFGQh0rSlEhkLFSsqoAhurxwWxIJQBJZeVixacLiKTIcdzIae542ef29gPPhYpvZfjKV1oypfQDrHrvQFW2miPhJ4A_4tJK2mH_GL5hKVt60eNfjLq_9j0e9xr_gbpmGgO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4842121_121_201</pqid></control><display><type>book_chapter</type><title>Potential Flow</title><source>Oxford Scholarship Online</source><creator>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</creator><creatorcontrib>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</creatorcontrib><description>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</description><identifier>ISBN: 0198702442</identifier><identifier>ISBN: 9780198702443</identifier><identifier>EISBN: 9780191772153</identifier><identifier>EISBN: 0191772151</identifier><identifier>EISBN: 0191006831</identifier><identifier>EISBN: 9780191006838</identifier><identifier>DOI: 10.1093/acprof:oso/9780198702443.003.0006</identifier><identifier>OCLC: 905746533</identifier><identifier>LCCallNum: QA911.P497 2012eb</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><subject>Flow, turbulence, rheology ; Mechanical engineering ; Physical chemistry</subject><ispartof>Physical Hydrodynamics, 2015</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4842121-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902,28023</link.rule.ids></links><search><creatorcontrib>Mitescu, Catalin D</creatorcontrib><creatorcontrib>Hulin, Jean-Pierre</creatorcontrib><creatorcontrib>Petit, Luc</creatorcontrib><creatorcontrib>Guyon, Etienne</creatorcontrib><title>Potential Flow</title><title>Physical Hydrodynamics</title><description>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</description><subject>Flow, turbulence, rheology</subject><subject>Mechanical engineering</subject><subject>Physical chemistry</subject><isbn>0198702442</isbn><isbn>9780198702443</isbn><isbn>9780191772153</isbn><isbn>0191772151</isbn><isbn>0191006831</isbn><isbn>9780191006838</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2015</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkEtLw0AQgFdEsdb4G7x6SDuPfXqTYlUo6EHPyybZ4CO4MUnx75uSonjzMMxh5pvHJ8QlwgLB8TKUbZfqq9SnpTMW0FkDJCUvAHYB-kBkUwGNIVR8KE5_uuhYzBwoI7ViPhFZ37-NCGpkZXkmzh_TED-G19BcrJv0dSaO6tD0MdvnuXhe3zyt7vLNw-396nqTJ0IeclNRabUrC1MFGQh0rSlEhkLFSsqoAhurxwWxIJQBJZeVixacLiKTIcdzIae542ef29gPPhYpvZfjKV1oypfQDrHrvQFW2miPhJ4A_4tJK2mH_GL5hKVt60eNfjLq_9j0e9xr_gbpmGgO</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Mitescu, Catalin D</creator><creator>Hulin, Jean-Pierre</creator><creator>Petit, Luc</creator><creator>Guyon, Etienne</creator><general>Oxford University Press</general><general>Oxford University Press, Incorporated</general><scope>FFUUA</scope></search><sort><creationdate>2015</creationdate><title>Potential Flow</title><author>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o213t-7d2c869cb7da4a206f62ae30b5ed44e5a3786358eb214a143cd9e8096be327293</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Flow, turbulence, rheology</topic><topic>Mechanical engineering</topic><topic>Physical chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitescu, Catalin D</creatorcontrib><creatorcontrib>Hulin, Jean-Pierre</creatorcontrib><creatorcontrib>Petit, Luc</creatorcontrib><creatorcontrib>Guyon, Etienne</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitescu, Catalin D</au><au>Hulin, Jean-Pierre</au><au>Petit, Luc</au><au>Guyon, Etienne</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Potential Flow</atitle><btitle>Physical Hydrodynamics</btitle><date>2015</date><risdate>2015</risdate><isbn>0198702442</isbn><isbn>9780198702443</isbn><eisbn>9780191772153</eisbn><eisbn>0191772151</eisbn><eisbn>0191006831</eisbn><eisbn>9780191006838</eisbn><abstract>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/acprof:oso/9780198702443.003.0006</doi><oclcid>905746533</oclcid></addata></record>
fulltext fulltext
identifier ISBN: 0198702442
ispartof Physical Hydrodynamics, 2015
issn
language eng
recordid cdi_proquest_ebookcentralchapters_7035676_121_201
source Oxford Scholarship Online
subjects Flow, turbulence, rheology
Mechanical engineering
Physical chemistry
title Potential Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oup_o&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Potential%20Flow&rft.btitle=Physical%20Hydrodynamics&rft.au=Mitescu,%20Catalin%20D&rft.date=2015&rft.isbn=0198702442&rft.isbn_list=9780198702443&rft_id=info:doi/10.1093/acprof:oso/9780198702443.003.0006&rft_dat=%3Cproquest_oup_o%3EEBC4842121_121_201%3C/proquest_oup_o%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780191772153&rft.eisbn_list=0191772151&rft.eisbn_list=0191006831&rft.eisbn_list=9780191006838&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4842121_121_201&rft_id=info:pmid/&rft_oup_id=acprof_9780198702443_chapter_6&rfr_iscdi=true