Potential Flow
Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of example...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mitescu, Catalin D Hulin, Jean-Pierre Petit, Luc Guyon, Etienne |
description | Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows. |
doi_str_mv | 10.1093/acprof:oso/9780198702443.003.0006 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_oup_o</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7035676_121_201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>acprof_9780198702443_chapter_6</oup_id><sourcerecordid>EBC4842121_121_201</sourcerecordid><originalsourceid>FETCH-LOGICAL-o213t-7d2c869cb7da4a206f62ae30b5ed44e5a3786358eb214a143cd9e8096be327293</originalsourceid><addsrcrecordid>eNqNkEtLw0AQgFdEsdb4G7x6SDuPfXqTYlUo6EHPyybZ4CO4MUnx75uSonjzMMxh5pvHJ8QlwgLB8TKUbZfqq9SnpTMW0FkDJCUvAHYB-kBkUwGNIVR8KE5_uuhYzBwoI7ViPhFZ37-NCGpkZXkmzh_TED-G19BcrJv0dSaO6tD0MdvnuXhe3zyt7vLNw-396nqTJ0IeclNRabUrC1MFGQh0rSlEhkLFSsqoAhurxwWxIJQBJZeVixacLiKTIcdzIae542ef29gPPhYpvZfjKV1oypfQDrHrvQFW2miPhJ4A_4tJK2mH_GL5hKVt60eNfjLq_9j0e9xr_gbpmGgO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4842121_121_201</pqid></control><display><type>book_chapter</type><title>Potential Flow</title><source>Oxford Scholarship Online</source><creator>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</creator><creatorcontrib>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</creatorcontrib><description>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</description><identifier>ISBN: 0198702442</identifier><identifier>ISBN: 9780198702443</identifier><identifier>EISBN: 9780191772153</identifier><identifier>EISBN: 0191772151</identifier><identifier>EISBN: 0191006831</identifier><identifier>EISBN: 9780191006838</identifier><identifier>DOI: 10.1093/acprof:oso/9780198702443.003.0006</identifier><identifier>OCLC: 905746533</identifier><identifier>LCCallNum: QA911.P497 2012eb</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><subject>Flow, turbulence, rheology ; Mechanical engineering ; Physical chemistry</subject><ispartof>Physical Hydrodynamics, 2015</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4842121-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902,28023</link.rule.ids></links><search><creatorcontrib>Mitescu, Catalin D</creatorcontrib><creatorcontrib>Hulin, Jean-Pierre</creatorcontrib><creatorcontrib>Petit, Luc</creatorcontrib><creatorcontrib>Guyon, Etienne</creatorcontrib><title>Potential Flow</title><title>Physical Hydrodynamics</title><description>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</description><subject>Flow, turbulence, rheology</subject><subject>Mechanical engineering</subject><subject>Physical chemistry</subject><isbn>0198702442</isbn><isbn>9780198702443</isbn><isbn>9780191772153</isbn><isbn>0191772151</isbn><isbn>0191006831</isbn><isbn>9780191006838</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2015</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkEtLw0AQgFdEsdb4G7x6SDuPfXqTYlUo6EHPyybZ4CO4MUnx75uSonjzMMxh5pvHJ8QlwgLB8TKUbZfqq9SnpTMW0FkDJCUvAHYB-kBkUwGNIVR8KE5_uuhYzBwoI7ViPhFZ37-NCGpkZXkmzh_TED-G19BcrJv0dSaO6tD0MdvnuXhe3zyt7vLNw-396nqTJ0IeclNRabUrC1MFGQh0rSlEhkLFSsqoAhurxwWxIJQBJZeVixacLiKTIcdzIae542ef29gPPhYpvZfjKV1oypfQDrHrvQFW2miPhJ4A_4tJK2mH_GL5hKVt60eNfjLq_9j0e9xr_gbpmGgO</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Mitescu, Catalin D</creator><creator>Hulin, Jean-Pierre</creator><creator>Petit, Luc</creator><creator>Guyon, Etienne</creator><general>Oxford University Press</general><general>Oxford University Press, Incorporated</general><scope>FFUUA</scope></search><sort><creationdate>2015</creationdate><title>Potential Flow</title><author>Mitescu, Catalin D ; Hulin, Jean-Pierre ; Petit, Luc ; Guyon, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o213t-7d2c869cb7da4a206f62ae30b5ed44e5a3786358eb214a143cd9e8096be327293</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Flow, turbulence, rheology</topic><topic>Mechanical engineering</topic><topic>Physical chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Mitescu, Catalin D</creatorcontrib><creatorcontrib>Hulin, Jean-Pierre</creatorcontrib><creatorcontrib>Petit, Luc</creatorcontrib><creatorcontrib>Guyon, Etienne</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitescu, Catalin D</au><au>Hulin, Jean-Pierre</au><au>Petit, Luc</au><au>Guyon, Etienne</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Potential Flow</atitle><btitle>Physical Hydrodynamics</btitle><date>2015</date><risdate>2015</risdate><isbn>0198702442</isbn><isbn>9780198702443</isbn><eisbn>9780191772153</eisbn><eisbn>0191772151</eisbn><eisbn>0191006831</eisbn><eisbn>9780191006838</eisbn><abstract>Potential flows correspond to irrotational velocity fields: this irrotationality is first shown to be persistent for perfect fluids of zero viscosity. Simple examples of such flows (or approximations of them) are given. The velocity potential is then introduced and illustrated by a number of examples such as potential flows around an obstacle of arbitrary shape and Magnus force when the circulation of the velocity around the obstacle is non zero. Linear surface waves along the surface of a fluid are then presented and also represent an example of potential flow. The following section discusses the analogy between potential flow and electromagnetism. Finally, the chapter introduces the concept of a complex velocity potential and of the conformal mapping technique which are then illustrated by a number of examples of fluid flows.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/acprof:oso/9780198702443.003.0006</doi><oclcid>905746533</oclcid></addata></record> |
fulltext | fulltext |
identifier | ISBN: 0198702442 |
ispartof | Physical Hydrodynamics, 2015 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_7035676_121_201 |
source | Oxford Scholarship Online |
subjects | Flow, turbulence, rheology Mechanical engineering Physical chemistry |
title | Potential Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oup_o&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Potential%20Flow&rft.btitle=Physical%20Hydrodynamics&rft.au=Mitescu,%20Catalin%20D&rft.date=2015&rft.isbn=0198702442&rft.isbn_list=9780198702443&rft_id=info:doi/10.1093/acprof:oso/9780198702443.003.0006&rft_dat=%3Cproquest_oup_o%3EEBC4842121_121_201%3C/proquest_oup_o%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780191772153&rft.eisbn_list=0191772151&rft.eisbn_list=0191006831&rft.eisbn_list=9780191006838&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4842121_121_201&rft_id=info:pmid/&rft_oup_id=acprof_9780198702443_chapter_6&rfr_iscdi=true |