Segmentation of Deep Learning Models
In applications such as disease detection, crop management, weed management, robotics, augmented reality, and medical image analysis, image segmentation is widely used. Image segmentation is a method of dividing a digital photo into several segments (units of pixels, frequently referred to as image...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | |
container_start_page | 115 |
container_title | |
container_volume | 1 |
creator | Kaur, Prabhjot Mishra, Anand Muni |
description | In applications such as disease detection, crop management, weed management, robotics, augmented reality, and medical image analysis, image segmentation is widely used. Image segmentation is a method of dividing a digital photo into several segments (units of pixels, frequently referred to as image objects). Using the image segmentation technique, it is easy for researchers to research and recognize the illustration of an image. In this chapter, various algorithms, including the threshold method, edge-based technique, clustering technique, and watershed method, are explained. Deep learning models about segmentation as a whole have been envisioned in many applications, including overall performance, with the computer images and presenter aiming to develop an image segmentation approach. Based on segmentation, we interpret the similarities, benefits, and drawbacks of these deep-learning models. |
doi_str_mv | 10.1201/9781003143468-8 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_7014244_16_126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7014244_16_126</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1086-b33d2fb8cf23b395e25d5589df5c7fd2732d25ffabe64537008015fdb9bed2b03</originalsourceid><addsrcrecordid>eNpVkDFPwzAQhY0QCCidWTOwFs53seOMqEBBKmIAZsuO7RJI42IHEP-eVGVhOunp3qf3HmNnHC44Ar-sK8UBiJdUSjVTe2y6U0BCjSXssxMgWclaEfFDdsKJoCahSByxac5v4yNKjijwmJ0_-dXa94MZ2tgXMRTX3m-KpTepb_tV8RCd7_IpOwimy376dyfs5fbmeX43Wz4u7udXy1nLQcmZJXIYrGoCkqVaeBROCFW7IJoqOKwIHYoQjPWyFFQBKOAiOFtb79ACTRjtuJsUPz59HrS3Mb43Y75kuubVbAafsq6Al1iWmkvNUY6uxc7V9iGmtfmOqXN6MD9dTCGZvmnzlpI1B72dT_-bTyv9NULH9ki_rZtiaA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC7014244_16_126</pqid></control><display><type>book_chapter</type><title>Segmentation of Deep Learning Models</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Kaur, Prabhjot ; Mishra, Anand Muni</creator><contributor>Gandomani, Taghi Javdani ; Singh, Amitoj ; Kukreja, Vinay ; Gandomani, Taghi Javdani ; Kukreja, Vinay ; Singh, Amitoj</contributor><creatorcontrib>Kaur, Prabhjot ; Mishra, Anand Muni ; Gandomani, Taghi Javdani ; Singh, Amitoj ; Kukreja, Vinay ; Gandomani, Taghi Javdani ; Kukreja, Vinay ; Singh, Amitoj</creatorcontrib><description>In applications such as disease detection, crop management, weed management, robotics, augmented reality, and medical image analysis, image segmentation is widely used. Image segmentation is a method of dividing a digital photo into several segments (units of pixels, frequently referred to as image objects). Using the image segmentation technique, it is easy for researchers to research and recognize the illustration of an image. In this chapter, various algorithms, including the threshold method, edge-based technique, clustering technique, and watershed method, are explained. Deep learning models about segmentation as a whole have been envisioned in many applications, including overall performance, with the computer images and presenter aiming to develop an image segmentation approach. Based on segmentation, we interpret the similarities, benefits, and drawbacks of these deep-learning models.</description><edition>1</edition><identifier>ISBN: 0367698331</identifier><identifier>ISBN: 9780367694326</identifier><identifier>ISBN: 0367694328</identifier><identifier>ISBN: 9780367698331</identifier><identifier>EISBN: 9781000609240</identifier><identifier>EISBN: 1000609243</identifier><identifier>EISBN: 9781003143468</identifier><identifier>EISBN: 9781000609233</identifier><identifier>EISBN: 1003143466</identifier><identifier>EISBN: 1000609235</identifier><identifier>DOI: 10.1201/9781003143468-8</identifier><identifier>OCLC: 1330935835</identifier><identifier>LCCallNum: Q335 .M334 2023</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Machine Learning for Edge Computing, 2023, Vol.1, p.115-126</ispartof><rights>2023 selection and editorial matter, Amitoj Singh, Vinay Kukreja, Taghi Javdani Gandomani; individual chapters, the contributors</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/7014244-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Gandomani, Taghi Javdani</contributor><contributor>Singh, Amitoj</contributor><contributor>Kukreja, Vinay</contributor><contributor>Gandomani, Taghi Javdani</contributor><contributor>Kukreja, Vinay</contributor><contributor>Singh, Amitoj</contributor><creatorcontrib>Kaur, Prabhjot</creatorcontrib><creatorcontrib>Mishra, Anand Muni</creatorcontrib><title>Segmentation of Deep Learning Models</title><title>Machine Learning for Edge Computing</title><description>In applications such as disease detection, crop management, weed management, robotics, augmented reality, and medical image analysis, image segmentation is widely used. Image segmentation is a method of dividing a digital photo into several segments (units of pixels, frequently referred to as image objects). Using the image segmentation technique, it is easy for researchers to research and recognize the illustration of an image. In this chapter, various algorithms, including the threshold method, edge-based technique, clustering technique, and watershed method, are explained. Deep learning models about segmentation as a whole have been envisioned in many applications, including overall performance, with the computer images and presenter aiming to develop an image segmentation approach. Based on segmentation, we interpret the similarities, benefits, and drawbacks of these deep-learning models.</description><isbn>0367698331</isbn><isbn>9780367694326</isbn><isbn>0367694328</isbn><isbn>9780367698331</isbn><isbn>9781000609240</isbn><isbn>1000609243</isbn><isbn>9781003143468</isbn><isbn>9781000609233</isbn><isbn>1003143466</isbn><isbn>1000609235</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2023</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkDFPwzAQhY0QCCidWTOwFs53seOMqEBBKmIAZsuO7RJI42IHEP-eVGVhOunp3qf3HmNnHC44Ar-sK8UBiJdUSjVTe2y6U0BCjSXssxMgWclaEfFDdsKJoCahSByxac5v4yNKjijwmJ0_-dXa94MZ2tgXMRTX3m-KpTepb_tV8RCd7_IpOwimy376dyfs5fbmeX43Wz4u7udXy1nLQcmZJXIYrGoCkqVaeBROCFW7IJoqOKwIHYoQjPWyFFQBKOAiOFtb79ACTRjtuJsUPz59HrS3Mb43Y75kuubVbAafsq6Al1iWmkvNUY6uxc7V9iGmtfmOqXN6MD9dTCGZvmnzlpI1B72dT_-bTyv9NULH9ki_rZtiaA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kaur, Prabhjot</creator><creator>Mishra, Anand Muni</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2023</creationdate><title>Segmentation of Deep Learning Models</title><author>Kaur, Prabhjot ; Mishra, Anand Muni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1086-b33d2fb8cf23b395e25d5589df5c7fd2732d25ffabe64537008015fdb9bed2b03</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Prabhjot</creatorcontrib><creatorcontrib>Mishra, Anand Muni</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Prabhjot</au><au>Mishra, Anand Muni</au><au>Gandomani, Taghi Javdani</au><au>Singh, Amitoj</au><au>Kukreja, Vinay</au><au>Gandomani, Taghi Javdani</au><au>Kukreja, Vinay</au><au>Singh, Amitoj</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Segmentation of Deep Learning Models</atitle><btitle>Machine Learning for Edge Computing</btitle><date>2023</date><risdate>2023</risdate><volume>1</volume><spage>115</spage><epage>126</epage><pages>115-126</pages><isbn>0367698331</isbn><isbn>9780367694326</isbn><isbn>0367694328</isbn><isbn>9780367698331</isbn><eisbn>9781000609240</eisbn><eisbn>1000609243</eisbn><eisbn>9781003143468</eisbn><eisbn>9781000609233</eisbn><eisbn>1003143466</eisbn><eisbn>1000609235</eisbn><abstract>In applications such as disease detection, crop management, weed management, robotics, augmented reality, and medical image analysis, image segmentation is widely used. Image segmentation is a method of dividing a digital photo into several segments (units of pixels, frequently referred to as image objects). Using the image segmentation technique, it is easy for researchers to research and recognize the illustration of an image. In this chapter, various algorithms, including the threshold method, edge-based technique, clustering technique, and watershed method, are explained. Deep learning models about segmentation as a whole have been envisioned in many applications, including overall performance, with the computer images and presenter aiming to develop an image segmentation approach. Based on segmentation, we interpret the similarities, benefits, and drawbacks of these deep-learning models.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003143468-8</doi><oclcid>1330935835</oclcid><tpages>12</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 0367698331 |
ispartof | Machine Learning for Edge Computing, 2023, Vol.1, p.115-126 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_7014244_16_126 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
title | Segmentation of Deep Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Segmentation%20of%20Deep%20Learning%20Models&rft.btitle=Machine%20Learning%20for%20Edge%20Computing&rft.au=Kaur,%20Prabhjot&rft.date=2023&rft.volume=1&rft.spage=115&rft.epage=126&rft.pages=115-126&rft.isbn=0367698331&rft.isbn_list=9780367694326&rft.isbn_list=0367694328&rft.isbn_list=9780367698331&rft_id=info:doi/10.1201/9781003143468-8&rft_dat=%3Cproquest_infor%3EEBC7014244_16_126%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000609240&rft.eisbn_list=1000609243&rft.eisbn_list=9781003143468&rft.eisbn_list=9781000609233&rft.eisbn_list=1003143466&rft.eisbn_list=1000609235&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7014244_16_126&rft_id=info:pmid/&rfr_iscdi=true |