An Analysis of Data Management in Industry 4.0 Using Big Data Analytics
Advancements in sensing technology and wireless networks allow digital communication without human interferences. It is referred to as Industry 4.0, aiming to automate and decentralize product manufacturing. Nowadays, it has emerged widely in various industries such as health care, stock market, ent...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | |
container_volume | |
creator | Khandelwal, Jyoti Anand, Jyoti |
description | Advancements in sensing technology and wireless networks allow digital communication without human interferences. It is referred to as Industry 4.0, aiming to automate and decentralize product manufacturing. Nowadays, it has emerged widely in various industries such as health care, stock market, enterprise resource planning, industrial manufacturing, and so on. It produces enormous amounts of data with different formats, which can't be fit in existing databases (i.e., relational database management system). Here, big data comes with a vital role to transform and manage the produced data (sensory data) into actionable ideas. It's able to discover the patterns, trends, preferences among data and establish meaningful relations. Big data boosts the efficiency of industry with respect to product development, cost and supply chain optimization, fault prediction, and the like. The authors present an idea of the closeness between big data and blockchain in the industrial sector. The review part of this chapter summarizes the auxiliary tools and methods of big data that have been proposed recently. This research work further highlights recent inclinations, prospects, and downsides of big data in Industry 4.0. |
doi_str_mv | 10.1201/9781003252009-6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6963529_14_110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6963529_14_110</sourcerecordid><originalsourceid>FETCH-LOGICAL-i178t-c2d86d08ac80385cfdb2346581ca972383fc1d86972ada3705633b5f02c4924f3</originalsourceid><addsrcrecordid>eNpVkE9PAjEQxWuMRkXOXvsFFjud3W73iKhIgvEi56Z0t1hdutgWDd_eRbhwmj9575eZR8gdsBFwBvdVKYEx5AVnrMrEGRmebM6PM3IooUC4JDeAgFLmCOyKDGP8ZIxxISoh5DWZjj0de93uoou0s_RRJ01ftderZt34RJ2nM19vYwo7mo8YXUTnV_TBrQ7Kf2tyJt6SC6vb2AyPdUAWz0_vk5ds_jadTcbzzEEpU2Z4LUXNpDaSoSyMrZccc1FIMLoqOUq0BnpJ3-taY8kKgbgsLOMmr3hucUDwwN2E7nvbxKSaZdd9mf7WoFvzoTepCVH132HBKwW5gj6LAZkeXM7bLqz1bxfaWiW9a7tgg_bGxT0lKmBqH7I6iVQJ9dNDXec5_gERhG2c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6963529_14_110</pqid></control><display><type>book_chapter</type><title>An Analysis of Data Management in Industry 4.0 Using Big Data Analytics</title><source>Ebook Central Perpetual and DDA</source><creator>Khandelwal, Jyoti ; Anand, Jyoti</creator><contributor>Jena, Om Prakash ; Pramanik, Sabyasachi ; Elngar, Ahmed A.</contributor><creatorcontrib>Khandelwal, Jyoti ; Anand, Jyoti ; Jena, Om Prakash ; Pramanik, Sabyasachi ; Elngar, Ahmed A.</creatorcontrib><description>Advancements in sensing technology and wireless networks allow digital communication without human interferences. It is referred to as Industry 4.0, aiming to automate and decentralize product manufacturing. Nowadays, it has emerged widely in various industries such as health care, stock market, enterprise resource planning, industrial manufacturing, and so on. It produces enormous amounts of data with different formats, which can't be fit in existing databases (i.e., relational database management system). Here, big data comes with a vital role to transform and manage the produced data (sensory data) into actionable ideas. It's able to discover the patterns, trends, preferences among data and establish meaningful relations. Big data boosts the efficiency of industry with respect to product development, cost and supply chain optimization, fault prediction, and the like. The authors present an idea of the closeness between big data and blockchain in the industrial sector. The review part of this chapter summarizes the auxiliary tools and methods of big data that have been proposed recently. This research work further highlights recent inclinations, prospects, and downsides of big data in Industry 4.0.</description><edition>1</edition><identifier>ISBN: 9781032171531</identifier><identifier>ISBN: 1032171545</identifier><identifier>ISBN: 9781032171548</identifier><identifier>ISBN: 1032171537</identifier><identifier>EISBN: 9781003252009</identifier><identifier>EISBN: 1003252001</identifier><identifier>EISBN: 9781000600278</identifier><identifier>EISBN: 1000600270</identifier><identifier>EISBN: 9781000600308</identifier><identifier>EISBN: 1000600300</identifier><identifier>DOI: 10.1201/9781003252009-6</identifier><identifier>OCLC: 1313884310</identifier><identifier>LCCallNum: Q335 .M334 2022</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing, 2022, p.95-109</ispartof><rights>2022 selection and editorial matter, Om Prakash Jena, Sabyasachi Pramanik, Ahmed A. Elngar; individual chapters, the contributors</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3027-258X ; 0000-0001-5787-3185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6963529-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Jena, Om Prakash</contributor><contributor>Pramanik, Sabyasachi</contributor><contributor>Elngar, Ahmed A.</contributor><creatorcontrib>Khandelwal, Jyoti</creatorcontrib><creatorcontrib>Anand, Jyoti</creatorcontrib><title>An Analysis of Data Management in Industry 4.0 Using Big Data Analytics</title><title>Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing</title><description>Advancements in sensing technology and wireless networks allow digital communication without human interferences. It is referred to as Industry 4.0, aiming to automate and decentralize product manufacturing. Nowadays, it has emerged widely in various industries such as health care, stock market, enterprise resource planning, industrial manufacturing, and so on. It produces enormous amounts of data with different formats, which can't be fit in existing databases (i.e., relational database management system). Here, big data comes with a vital role to transform and manage the produced data (sensory data) into actionable ideas. It's able to discover the patterns, trends, preferences among data and establish meaningful relations. Big data boosts the efficiency of industry with respect to product development, cost and supply chain optimization, fault prediction, and the like. The authors present an idea of the closeness between big data and blockchain in the industrial sector. The review part of this chapter summarizes the auxiliary tools and methods of big data that have been proposed recently. This research work further highlights recent inclinations, prospects, and downsides of big data in Industry 4.0.</description><isbn>9781032171531</isbn><isbn>1032171545</isbn><isbn>9781032171548</isbn><isbn>1032171537</isbn><isbn>9781003252009</isbn><isbn>1003252001</isbn><isbn>9781000600278</isbn><isbn>1000600270</isbn><isbn>9781000600308</isbn><isbn>1000600300</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE9PAjEQxWuMRkXOXvsFFjud3W73iKhIgvEi56Z0t1hdutgWDd_eRbhwmj9575eZR8gdsBFwBvdVKYEx5AVnrMrEGRmebM6PM3IooUC4JDeAgFLmCOyKDGP8ZIxxISoh5DWZjj0de93uoou0s_RRJ01ftderZt34RJ2nM19vYwo7mo8YXUTnV_TBrQ7Kf2tyJt6SC6vb2AyPdUAWz0_vk5ds_jadTcbzzEEpU2Z4LUXNpDaSoSyMrZccc1FIMLoqOUq0BnpJ3-taY8kKgbgsLOMmr3hucUDwwN2E7nvbxKSaZdd9mf7WoFvzoTepCVH132HBKwW5gj6LAZkeXM7bLqz1bxfaWiW9a7tgg_bGxT0lKmBqH7I6iVQJ9dNDXec5_gERhG2c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khandelwal, Jyoti</creator><creator>Anand, Jyoti</creator><general>CRC Press</general><general>Taylor & Francis Group</general><scope>FFUUA</scope><orcidid>https://orcid.org/0000-0002-3027-258X</orcidid><orcidid>https://orcid.org/0000-0001-5787-3185</orcidid></search><sort><creationdate>2022</creationdate><title>An Analysis of Data Management in Industry 4.0 Using Big Data Analytics</title><author>Khandelwal, Jyoti ; Anand, Jyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i178t-c2d86d08ac80385cfdb2346581ca972383fc1d86972ada3705633b5f02c4924f3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Jyoti</creatorcontrib><creatorcontrib>Anand, Jyoti</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khandelwal, Jyoti</au><au>Anand, Jyoti</au><au>Jena, Om Prakash</au><au>Pramanik, Sabyasachi</au><au>Elngar, Ahmed A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>An Analysis of Data Management in Industry 4.0 Using Big Data Analytics</atitle><btitle>Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing</btitle><date>2022</date><risdate>2022</risdate><spage>95</spage><epage>109</epage><pages>95-109</pages><isbn>9781032171531</isbn><isbn>1032171545</isbn><isbn>9781032171548</isbn><isbn>1032171537</isbn><eisbn>9781003252009</eisbn><eisbn>1003252001</eisbn><eisbn>9781000600278</eisbn><eisbn>1000600270</eisbn><eisbn>9781000600308</eisbn><eisbn>1000600300</eisbn><abstract>Advancements in sensing technology and wireless networks allow digital communication without human interferences. It is referred to as Industry 4.0, aiming to automate and decentralize product manufacturing. Nowadays, it has emerged widely in various industries such as health care, stock market, enterprise resource planning, industrial manufacturing, and so on. It produces enormous amounts of data with different formats, which can't be fit in existing databases (i.e., relational database management system). Here, big data comes with a vital role to transform and manage the produced data (sensory data) into actionable ideas. It's able to discover the patterns, trends, preferences among data and establish meaningful relations. Big data boosts the efficiency of industry with respect to product development, cost and supply chain optimization, fault prediction, and the like. The authors present an idea of the closeness between big data and blockchain in the industrial sector. The review part of this chapter summarizes the auxiliary tools and methods of big data that have been proposed recently. This research work further highlights recent inclinations, prospects, and downsides of big data in Industry 4.0.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003252009-6</doi><oclcid>1313884310</oclcid><tpages>15</tpages><edition>1</edition><orcidid>https://orcid.org/0000-0002-3027-258X</orcidid><orcidid>https://orcid.org/0000-0001-5787-3185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781032171531 |
ispartof | Machine Learning Adoption in Blockchain-Based Intelligent Manufacturing, 2022, p.95-109 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_6963529_14_110 |
source | Ebook Central Perpetual and DDA |
title | An Analysis of Data Management in Industry 4.0 Using Big Data Analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=An%20Analysis%20of%20Data%20Management%20in%20Industry%204.0%20Using%20Big%20Data%20Analytics&rft.btitle=Machine%20Learning%20Adoption%20in%20Blockchain-Based%20Intelligent%20Manufacturing&rft.au=Khandelwal,%20Jyoti&rft.date=2022&rft.spage=95&rft.epage=109&rft.pages=95-109&rft.isbn=9781032171531&rft.isbn_list=1032171545&rft.isbn_list=9781032171548&rft.isbn_list=1032171537&rft_id=info:doi/10.1201/9781003252009-6&rft_dat=%3Cproquest_infor%3EEBC6963529_14_110%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781003252009&rft.eisbn_list=1003252001&rft.eisbn_list=9781000600278&rft.eisbn_list=1000600270&rft.eisbn_list=9781000600308&rft.eisbn_list=1000600300&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6963529_14_110&rft_id=info:pmid/&rfr_iscdi=true |