Time-Varying Fields

This chapter begins with Faraday’s law and its applications. It discusses different cases of electromagnetic induction including that for stationary loop located in a time-varying magnetic field, time-varying closed contour in time-invariant magnetic field, time-varying closed contour in time-varyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, Ahmad Shahid, Mukerji, Saurabh Kumar
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue
container_start_page 495
container_title
container_volume 1
creator Khan, Ahmad Shahid
Mukerji, Saurabh Kumar
description This chapter begins with Faraday’s law and its applications. It discusses different cases of electromagnetic induction including that for stationary loop located in a time-varying magnetic field, time-varying closed contour in time-invariant magnetic field, time-varying closed contour in time-varying magnetic field, and the closed contour with two adjacent moving sides in time-varying magnetic field. It also discusses the nature and conceptual aspects of the displacement current. It discusses Maxwell’s equations in integral and point form and the boundary conditions for time-varying fields. It describes the modification of gradient relation and Poisson’s equation for scalar electric and vector magnetic potentials. It includes a detailed discussion on the Poynting theorem, an alternative Poynting theorem, and their comparison. This chapter also describes the relativistic effects on field relations. This includes the special theory of relativity, Maxwell’s views, and the Lorentz transformation. It discusses Maxwell’s equations for moving media, force on stationary charges due to steady conduction currents, the second observer paradox, magnetostatic field as the relativistic effect of electrostatic field, relativistic effects on time-independent fields, and energy density of line currents and surface currents.
doi_str_mv 10.1201/9781003046134-15
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6350391_575_530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6350391_575_530</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1100-121cd55fbe4dd06cbd9b1b5de0cdda77df665d2bf4363c359d047c1981c9663</originalsourceid><addsrcrecordid>eNpVkE1LAzEURSOiaGtXblz6B0bfm-RlJksp1goFFxZxF_I1GpzO1GRU-u9tGTeuLly458Jh7ArhBkvAW1XVCMBBSOSiQDpis7EClDWRPGYT4LISSij1esomiEqWJJDXZ2yWc7QgSoE1gDpnl-u4CcWLSbvYvV0vYmh9vmAnjWlzmP3llD0v7tfzZbF6enic362KiPuzAkt0nqixQXgP0lmvLFryAZz3pqp8IyX50jaCS-44KQ-icqhqdEpKPmVipG5T__kV8qCD7fsPF7ohmda9m-0QUtaSE3CFmirSxGE_W46z2DV92pifPrVeD2bX9qlJpnMxHzBZI-iDLf3PlkbS33ts7LuS_wITPVyb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6350391_575_530</pqid></control><display><type>book_chapter</type><title>Time-Varying Fields</title><source>Ebook Central Perpetual and DDA</source><creator>Khan, Ahmad Shahid ; Mukerji, Saurabh Kumar</creator><creatorcontrib>Khan, Ahmad Shahid ; Mukerji, Saurabh Kumar</creatorcontrib><description>This chapter begins with Faraday’s law and its applications. It discusses different cases of electromagnetic induction including that for stationary loop located in a time-varying magnetic field, time-varying closed contour in time-invariant magnetic field, time-varying closed contour in time-varying magnetic field, and the closed contour with two adjacent moving sides in time-varying magnetic field. It also discusses the nature and conceptual aspects of the displacement current. It discusses Maxwell’s equations in integral and point form and the boundary conditions for time-varying fields. It describes the modification of gradient relation and Poisson’s equation for scalar electric and vector magnetic potentials. It includes a detailed discussion on the Poynting theorem, an alternative Poynting theorem, and their comparison. This chapter also describes the relativistic effects on field relations. This includes the special theory of relativity, Maxwell’s views, and the Lorentz transformation. It discusses Maxwell’s equations for moving media, force on stationary charges due to steady conduction currents, the second observer paradox, magnetostatic field as the relativistic effect of electrostatic field, relativistic effects on time-independent fields, and energy density of line currents and surface currents.</description><edition>1</edition><identifier>ISBN: 036749499X</identifier><identifier>ISBN: 9780367494308</identifier><identifier>ISBN: 9780367494995</identifier><identifier>ISBN: 0367494302</identifier><identifier>EISBN: 9781000168556</identifier><identifier>EISBN: 9781003046134</identifier><identifier>EISBN: 1003046134</identifier><identifier>EISBN: 1000168514</identifier><identifier>EISBN: 1000168557</identifier><identifier>EISBN: 9781000168518</identifier><identifier>DOI: 10.1201/9781003046134-15</identifier><identifier>OCLC: 1196254138</identifier><identifier>LCCallNum: QC665.E4$b.K436 2021</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Electromagnetic Fields, 2021, Vol.1, p.495-558</ispartof><rights>2021 Taylor &amp; Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6350391-l.jpg</thumbnail><link.rule.ids>780,781,785,794,27930</link.rule.ids></links><search><creatorcontrib>Khan, Ahmad Shahid</creatorcontrib><creatorcontrib>Mukerji, Saurabh Kumar</creatorcontrib><title>Time-Varying Fields</title><title>Electromagnetic Fields</title><description>This chapter begins with Faraday’s law and its applications. It discusses different cases of electromagnetic induction including that for stationary loop located in a time-varying magnetic field, time-varying closed contour in time-invariant magnetic field, time-varying closed contour in time-varying magnetic field, and the closed contour with two adjacent moving sides in time-varying magnetic field. It also discusses the nature and conceptual aspects of the displacement current. It discusses Maxwell’s equations in integral and point form and the boundary conditions for time-varying fields. It describes the modification of gradient relation and Poisson’s equation for scalar electric and vector magnetic potentials. It includes a detailed discussion on the Poynting theorem, an alternative Poynting theorem, and their comparison. This chapter also describes the relativistic effects on field relations. This includes the special theory of relativity, Maxwell’s views, and the Lorentz transformation. It discusses Maxwell’s equations for moving media, force on stationary charges due to steady conduction currents, the second observer paradox, magnetostatic field as the relativistic effect of electrostatic field, relativistic effects on time-independent fields, and energy density of line currents and surface currents.</description><isbn>036749499X</isbn><isbn>9780367494308</isbn><isbn>9780367494995</isbn><isbn>0367494302</isbn><isbn>9781000168556</isbn><isbn>9781003046134</isbn><isbn>1003046134</isbn><isbn>1000168514</isbn><isbn>1000168557</isbn><isbn>9781000168518</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE1LAzEURSOiaGtXblz6B0bfm-RlJksp1goFFxZxF_I1GpzO1GRU-u9tGTeuLly458Jh7ArhBkvAW1XVCMBBSOSiQDpis7EClDWRPGYT4LISSij1esomiEqWJJDXZ2yWc7QgSoE1gDpnl-u4CcWLSbvYvV0vYmh9vmAnjWlzmP3llD0v7tfzZbF6enic362KiPuzAkt0nqixQXgP0lmvLFryAZz3pqp8IyX50jaCS-44KQ-icqhqdEpKPmVipG5T__kV8qCD7fsPF7ohmda9m-0QUtaSE3CFmirSxGE_W46z2DV92pifPrVeD2bX9qlJpnMxHzBZI-iDLf3PlkbS33ts7LuS_wITPVyb</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Khan, Ahmad Shahid</creator><creator>Mukerji, Saurabh Kumar</creator><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2021</creationdate><title>Time-Varying Fields</title><author>Khan, Ahmad Shahid ; Mukerji, Saurabh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1100-121cd55fbe4dd06cbd9b1b5de0cdda77df665d2bf4363c359d047c1981c9663</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ahmad Shahid</creatorcontrib><creatorcontrib>Mukerji, Saurabh Kumar</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ahmad Shahid</au><au>Mukerji, Saurabh Kumar</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Time-Varying Fields</atitle><btitle>Electromagnetic Fields</btitle><date>2021</date><risdate>2021</risdate><volume>1</volume><spage>495</spage><epage>558</epage><pages>495-558</pages><isbn>036749499X</isbn><isbn>9780367494308</isbn><isbn>9780367494995</isbn><isbn>0367494302</isbn><eisbn>9781000168556</eisbn><eisbn>9781003046134</eisbn><eisbn>1003046134</eisbn><eisbn>1000168514</eisbn><eisbn>1000168557</eisbn><eisbn>9781000168518</eisbn><abstract>This chapter begins with Faraday’s law and its applications. It discusses different cases of electromagnetic induction including that for stationary loop located in a time-varying magnetic field, time-varying closed contour in time-invariant magnetic field, time-varying closed contour in time-varying magnetic field, and the closed contour with two adjacent moving sides in time-varying magnetic field. It also discusses the nature and conceptual aspects of the displacement current. It discusses Maxwell’s equations in integral and point form and the boundary conditions for time-varying fields. It describes the modification of gradient relation and Poisson’s equation for scalar electric and vector magnetic potentials. It includes a detailed discussion on the Poynting theorem, an alternative Poynting theorem, and their comparison. This chapter also describes the relativistic effects on field relations. This includes the special theory of relativity, Maxwell’s views, and the Lorentz transformation. It discusses Maxwell’s equations for moving media, force on stationary charges due to steady conduction currents, the second observer paradox, magnetostatic field as the relativistic effect of electrostatic field, relativistic effects on time-independent fields, and energy density of line currents and surface currents.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781003046134-15</doi><oclcid>1196254138</oclcid><tpages>64</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 036749499X
ispartof Electromagnetic Fields, 2021, Vol.1, p.495-558
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6350391_575_530
source Ebook Central Perpetual and DDA
title Time-Varying Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Time-Varying%20Fields&rft.btitle=Electromagnetic%20Fields&rft.au=Khan,%20Ahmad%20Shahid&rft.date=2021&rft.volume=1&rft.spage=495&rft.epage=558&rft.pages=495-558&rft.isbn=036749499X&rft.isbn_list=9780367494308&rft.isbn_list=9780367494995&rft.isbn_list=0367494302&rft_id=info:doi/10.1201/9781003046134-15&rft_dat=%3Cproquest_infor%3EEBC6350391_575_530%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000168556&rft.eisbn_list=9781003046134&rft.eisbn_list=1003046134&rft.eisbn_list=1000168514&rft.eisbn_list=1000168557&rft.eisbn_list=9781000168518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6350391_575_530&rft_id=info:pmid/&rfr_iscdi=true